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Abstract. This paper presents an adaptation of the peepholing method
to regression trees. Peepholing was described as a means to overcome
the major computational bottleneck of growing classification trees by
Catlett [3]. This method involves two major steps: shortlisting and blink-
ering. The former has the goal of eliminating some continuous variables
from consideration when growing the tree, while the second tries to re-
strict the range of values of the remaining continuous variables that
should be considered when searching for the best cut point split. Both are
effective means of overcoming the most costly step of growing tree-based
models: sorting the values of the continuous variables before selecting
their best split. In this work we describe the adaptations that are neces-
sary to use this method within regression trees. The major adaptations
involve developing means to obtain biased estimates of the criterion used
to select the best split of these models. We present some preliminary ex-
periments that show the effectiveness of our proposal.

1 Introduction

Regression trees [5] handle multivariate regression problems obtaining models
that have proven to be quite interpretable and with competitive predictive ac-
curacy. Moreover, these models can be obtained with a computational efficiency
that hardly has parallel in competitive approaches, turning these models into a
good choice for a large variety of data mining problems where these features play
a major role. Nevertheless, the growth rate of databases creates problems even
for these efficient methods. As such, techniques for reducing the computational
requirements of growing regression trees are of key importance for handling ex-
tremely large problems.

Many strategies exist to try to overcome the problems of using a certain
modelling technique on very large data sets. These can be classified in two broad
categories: techniques that are independent of the modelling approach; and tech-
niques that involve the optimization of model construction. In the former we can
distinguish two major approaches: reducing the number of features; and reducing
the number of cases. Regards the second category, the approaches are generally
model-specific and basically try to address the computational bottlenecks of the
respective algorithm for obtaining the models. The work presented in this paper



is of this type: we try to address the major computational bottleneck of growing
regression trees.

One of the seminal works on handling large problems using tree-based models
is the work by Catlett [3]. This author has thoroughly addressed the issue of the
computational bottlenecks of growing classification trees, and presented several
approaches to try to overcome them. One of the key contributions of Catlett’s
work was the identification of the major bottleneck of the process of growing
a tree-based model: the selection of the best test on a continuous variable for
any node of a tree. In this context, Catlett has presented a technique, peep-
holing, which specifically addresses the problem of reducing the computational
complexity of this task. This technique consists of two major steps: shortlisting
and blinkering. The first tries to eliminate some continuous variables from the
set to be considered when searching for the best test of a node. The second tries
to reduce the range of values to be considered when searching for the best cut
point for a test in one of the variables not eliminated by the shortlisting step.
Among these two steps, the former has the larger impact in terms of reducing
the computational complexity of growing a tree according to Catlett.

Catlett has focused his work on classification trees. The peepholing method
is strongly connected to the criterion used to select the best test of a node. The
criteria used in classification trees are quite different from the usual criterion
(least squares) used for growing regression trees. The goal of this work is to try
to adapt the peepholing method to the growth of least squares regression trees.
We identify the key issues that require modification and propose solutions in
order to be able to use peepholing with regression trees.

The next section presents a brief overview of the theory behind the methods
used to grow least squares regression trees. Section 3 describes the peepholing
method presented by Catlett [3]. In Section 4 we describe our adaptation of this
method to regression trees. The results of our preliminary experiments with this
adaptation are shown in Section 5. Finally, the main conclusions of this work
are given in Section 6.

2 Least Squares Regression Trees

Regression trees are usually obtained by using a least squares error criterion (e.g.
[2]). A regression tree can be seen as a kind of additive regression model [4] of
the form,

rt (x) =
l∑

i=1

ki × I (x ∈ Di) (1)

where k′is are constants; I (.) is an indicator function returning 1 if its argument
is true and 0 otherwise; and D′

is are disjoint partitions of the training data D

such that
l⋃

i=1

Di = D and
l⋂

i=1

= φ.

These models are sometimes called piecewise constant regression models.
Regression trees are constructed using a recursive partitioning (RP) algorithm



(e.g. [2]). This algorithm builds a tree by recursively splitting the training sample
into smaller subsets. The algorithm has three key issues:

– A way to select a split test (the splitting rule).
– A rule to determine when a tree node is terminal.
– A rule for assigning a model to each terminal node (leaf nodes).

Assuming the minimization of the least squares error it can be easily proven
that if one wants to use constant models in the leaves of the trees, the constant
to use in each terminal node should be the average target variable of the cases
falling in each leaf. Thus the error in a tree node can be defined as,

Err (t) =
1
nt

∑
Dt

(yi − yt)
2 (2)

where Dt is the set of nt training samples falling in node t; and yt is the average
target variable (y) value of these cases. This is basically an estimate of the
variance of the target variable obtained with the cases in node t.

The error of a regression tree can be defined as,

Err (T ) =
∑
l∈T̃

P (l)× Err (l)

=
∑
l∈T̃

nl

n
× 1

nl

∑
Dl

(yi − yl)
2

=
1
n

∑
l∈T̃

∑
Dl

(yi − yl)
2 (3)

where T̃ is the set of leaves of tree T ; and P (l) is the probability of a case falling
in leaf l.

During tree growth, a split test s, divides the cases in node t into a set
of partitions. The decrease in error of the tree resulting from this split can be
measured by,

∆Err (s, t) = Err (t)−
∑

i

ni

n
× Err (ti) (4)

where Err (ti) is the error on the subset of cases of branch i of the split test s.
For the usual binary regression trees, where each node has a left and a right

branch, this reduces to,

∆Err (s, t) = Err (t)−
(nL

n
× Err (tL) +

nR

n
× Err (tR)

)
(5)

For each iteration of the RP algorithm, assuming the stopping criteria are
not yet met, we need to search for the best split test. This involves going through
all variables of the problem and for each one finding the best test according to



the criterion of Equation (5). Moreover, for each variable we have to search for
the best split, which for continuous variables involves sorting all values appear-
ing in the data and evaluating all possible intermediate cut point using again
Equation (5). Maximizing Equation (5) is equivalent to minimizing the second
term, also known as pooled variance, as the first term, Err(t) is constant for all
candidate splits.

According to this process we can see that the computational complexity of
growing regression trees is strongly dependent on the number of variables of
the problem and also on the number of different values appearing on the data.
Catlett has shown that continuous variables are particularly important given
their large number of different values and the corresponding cost of the sorting
operation. The peepholing method was designed to address these specific issues
as we will see in the next section.

3 The Peepholing Method

The basic idea of the peepholing method proposed by Catlett [3] is to use a
subsample (the peephole) to check whether some of the continuous variables, or
some ranges within a continuous variable, can be removed from consideration
for selecting the best split of a node without a significant loss in the overall
accuracy, but with a significant gain in computation speed. Notice that, contrary
to other related approaches (e.g. the sampling strategy proposed by Breiman et.
al [2]), the final selection of the best test is carried out on all available data. The
subsample is solely used for eliminating some candidates from this final selection
process.

Peepholing is an iterative process where on each iteration we increase the
size of the subsample (peephole) until certain criteria are met. For each peep
size two main operations are carried out: shortlisting and blinkering.

Shortlisting consists of trying to eliminate some continuous variables from
the list that will be used to select the best split of a node. The shortlist of a
node starts with all continuous variables and if the estimates obtained using the
current peephole size allow us to conclude that there is a very low probability
that a certain variable would be a good candidate for the best split on the
full sample, then that variable is eliminated from the shortlist. The variables
eliminated by this process will not be considered on subsequent peepholes nor
on the full sample best split selection.

Regarding blinkering it consists of maintaining a pair of numbers (the blink-
ers) for each variable in the shortlist. The interval spanned by the left and right
blinkers is an estimate of the range where the best cut point for the respective
variable may be contained. The process of blinkering tries to shorten this interval
which brings gains in terms of computation time as we need to sort less values
to find the best test of the variable.

Both steps of the peepholing process depend on obtaining reliable estimates
of the gain of candidate tests using solely the data in the peepholes.



3.1 Shortlisting

The objective of shortlisting is to eliminate some of the continuous variables from
the set of variables to be considered when selecting the best test for a node using
all data. Catlett proposed a method based on a pair of biased estimates of the
gain of a variable: the optimistic and the pessimistic estimates. These estimates
are designed so that the gain assessed with the full data set is likely to lie between
them. Once the estimates are obtained we can use them to eliminate all variables
whose optimistic estimate falls below the greatest pessimistic estimate (GPE) of
all variables in the current shortlist.

The method used for generating the biased estimates uses standard tech-
niques from the estimation theory of statistics, namely from estimates of the
mean of a population based on averages calculated with several samples with
the same size.

The work of Catlett addresses classification trees grown using information
gain [6] as the criterion for selecting the best split of a node. The information
gain is not a function of the average of the values of examples. Instead its value is
composed of several figures derived from averages, thus some adaptation of the
general estimation theory was required. The basic building block of information
gain is the expected information of a message. Assuming a binary class problem
the expected information of the class is given by −p log p − n log n, where p is
the probability of one of the classes and n = 1 − p. The values of p and n are
obtained by estimating them with relative frequencies. These frequencies can be
regarded as averages of a function f(X) = {1 if X = p, 0 if X = n}, over all
possible messages X. The standard error of this estimate is computed using,√

p(1− p)
N − 1

(6)

where N is the sample size.
By adding the standard error to the estimated frequency if p is less than

0.5, and subtracting it when it is greater, we get an optimistic estimate of p.
Conversely, by subtracting the error when p is less than 0.5 and adding it when
it is greater, we obtain a pessimistic estimate3.

To calculate the information gain of a test on a variable V we need to calculate
the gain resulting from its split of the examples. Assuming the standard binary
splits the information content of a split is the weighed average of the information
of the resulting sub-nodes entailed by the split,

InfGain(s,Dt) = Inf(Dt)− (pL × Inf(DtL
) + pR × Inf(DtR

)) (7)

where Dt is the set of examples in the node under consideration; pL (pR) is the
probability of an example following the left (right) branch of the split test s;
DtL

(DtR
) is the subset of Dt that fall in the left (right) branch of s; and Inf()

is the information content of a set of examples (given by −p log p− n log n).
3 Obviously taking into account the limit 0 and 1 for probabilities.



The probabilities pL and pR are calculated using relative frequencies. Again
we need to calculate optimistic and pessimistic estimates of these probabilities.

As the value of Inf(Dt) is constant for all trial splits of the node t4 , the
best split s is the split that minimizes the weighed average of the information
of the resulting branches, the estimate of the split. Catlett suggests obtaining
a pessimistic estimate of the gain of a split by using the optimistic estimate
of the split5, and vice versa. In order to obtain an optimistic estimate of a
split we combine the optimistic estimate of the most favorable branch with the
pessimistic estimate of least favorable branch. The combination is carried out
by giving more weight to the favorable branch by using the optimistic estimate
of the probability of that branch, and obviously doing the inverse with the less
favorable branch. The exact opposite process is done to obtain the pessimistic
estimate of a split.

The above described process of shortlisting depends on obtaining optimistic
and pessimistic estimates for two basic quantities: the information gain of a set
of cases and the probability of a branch. These are the key issues that we need
to address in order to adapt this process to regression trees.

3.2 Blinkering

The goal of blinkering is to restrict the range of values used for searching the
best cut point of continuous variables. The idea is to choose an interval so that
the best cut point is unlikely to fall outside of that range.

Catlett suggest the following heuristic to find the blinkers for each variable:
eliminate from consideration the values whose information gain is less than half
the maximum gain, or less than the average of the gains for all cut-points. These
gains are calculated using the current peephole, and are updated for each new
peep.

This step of peepholing requires no particular adaptation in order to use it
in regression trees. Instead of the information gain of a test we use the least
squares criterion of regression trees.

4 Adapting Peepholing to Regression Trees

There are two key issues that require modification in the peepholing method
described in Section 3, if we want to apply it within regression trees. The most
important is the adaptation of the criterion used to select the best split in a node.
Catlett has described forms of obtaining pessimistic and optimistic estimates
for the information gain, while in regression trees we need to provide similar
facilities for the criterion used in these models (c.f. Equation (5)). The other
4 This occurs because each candidate split of a node t only generates different parti-

tionings of Dt, i.e. different values of DtL and DtR , but Dt in itself is the same set
of cases.

5 Because the largest the estimate of the split, the worse the value of the gain, accord-
ing to Equation (7).



issue is to adapt the rule for eliminating some variables. This rule needs to be
adapted because while information gain is being maximized, the variance used
in regression trees is being minimized. This requires some adaptation in terms
of what is a pessimistic (optimistic) estimate of the gain of a split.

As seen in Section 2, Equation (5), the best split is the split that minimizes
the weighed average of the variance on the two sub-nodes resulting from the split
(the pooled variance). Thus, provided we find means of obtaining a pessimistic
and optimistic estimate of the variance of a node, we are ready to use a similar
process as the one described in Section 3.1 for shortlisting. Regarding blinker-
ing as we have mentioned before the method proposed by Catlett requires no
adaptation in order to use it in regression trees.

A confidence interval for the sample variance of variable Y (S2
Y ) obtained

with a sample of size N can be obtained by (e.g. [1]),(
(N − 1)S2

Y

χ2
α
2 ,N−1

,
(N − 1)S2

Y

χ2
1−α

2 ,N−1

)
(8)

where χ2
α
2 ,N is the value of the χ2 distribution with a confidence level of α and

N degrees of liberty.
Our proposal consists of using the smaller value of this interval as the opti-

mistic estimate of the variance6, while the largest value is used as the pessimistic
estimate.

The quantity whose estimates we need to calculate to obtain the value of a
test (c.f. Equations (5) and (2)) is the pooled variance,

varpool = pL × var(DtL
) + pR × var(DtR

) (9)

As soon as we have pessimistic and optimistic estimates of varpool for a split
s, we can calculate the respective estimates of the gain of this test as,

∆Errpess(s, t) = Err(t)− varpoolpess

∆Erropt(s, t) = Err(t)− varpoolopt
(10)

This is different from the method described by Catlett due to the already
mentioned fact that variance is something that we want to minimize on the tree.

We now need to define how to obtain the estimates for the pooled variance.
Assuming the right branch is more favorable than the left (i.e. var(DtL

) >
var(DtR

)), the optimistic estimate of this quantity is given by,

varpoolopt
= pLpess

× varopt(DtL
) + pRopt

× varopt(DtR
) (11)

The pessimistic and optimistic estimates of the probabilities of the branches
can be calculated using,

6 Recall, that contrary to information gain that we try to maximize, the variance is
being minimized.



Table 1. The characteristics (number of cases, number of variables) of the data sets
used in our experiments.

Data Set Characteristics Data Set Characteristics

Abalone 4177; 9 Elevators 8752; 19
CaliforniaHousing 20460; 9 Ailerons 7154; 40
ComputerA 8192; 22 Puma32NM 4499; 33
House 16H 22784; 17 House 8L 22784; 9

pRopt = pR + 3× SE

pLpess = pL − 3× SE (12)

where 3 corresponds roughly to a 99% confidence interval according to the normal
distribution tables, and SE is the standard error of the probability estimate given
by,

SE =

√
p(1− p)
N − 1

where N is the sample size and p is the probability of the left7 branch estimated
by the relative frequency according to the current peephole.

On the other hand a pessimistic estimate of the pooled variance assuming
the most favorable branch is still the right one, is given by

varpoolpess = pLopt × varpess(DtL
) + pRpess × varpess(DtR

) (13)

Equivalently, we could obtain similar formulas for the case where the left
branch is more favorable.

Using these estimates varpoolpess
and varpoolopt

we can once again adapt
Catlett’s method, by discarding all continuous variables whose optimistic esti-
mate is above the smallest pessimistic estimate (SPE) of all variables in the
current shortlist.

5 Experimental Results

In this section we describe a series of preliminary experiments designed to assert
the correctness of the adaptation we have described in Section 4. Namely, we
have tried to assert the correctness of our pessimistic and optimistic estimates
by checking whether they converge to the value obtained with the full training
sample, as the size of the peephole increases. This is the key issue for using
shortlisting to eliminate some variables from the tree growth process and thus
strongly decreasing the computation time necessary to obtain these models.



Convergence of the estimates
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Fig. 1. The convergence of the estimates for the best root split in the Abalone data
set (Shell.Weight < 0.16775).

We have used the data sets presented in Table 1 in our experiments.
With the goal of checking the convergence of our proposed pessimistic and

optimistic estimates of the pooled variance, we have carried out the following
experiment for each data set in Table 1:

1. Obtain the best split test using some regression tree program8.
2. Divide the data set in two sub-samples according to this split.
3. Calculate the corresponding pooled variance using the full data set

varpool = PL × varL + PR × varR

4. For increasing sizes of the peephole Do:
– For several9 random samples of the size under consideration Do:

• Get a sample of the size under consideration
• Calculate the pooled variance and its pessimistic and optimistic es-

timates using this sample.

7 Or right, given that pL = 1− pR.
8 In our experiments we have used the function rpart() from the R environment [7]

(http://www.r-project.org), which implements most of the ideas in the CART pro-
gram [2].

9 The graphs shown were obtained with 10 repetitions for each size.



Convergence of the estimates

Sample size

P
oo

le
d 

va
ria

nc
e 

es
tim

at
es

6 12 24 48 96 192 384 768 3072

0e
+

00
1e

−
07

2e
−

07
3e

−
07

4e
−

07
5e

−
07

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●●

●
●

●

●

●
●

●

●

●
●

●●

●
●
●●●

●●

●

●
●● ●●●

●

●
●

●

●●

●
●
●
●
●●●
●
●
●● ●●●●●●●●

●● ●●●●●●●●●●

●

Opt. Estimate
Pess. Estimate
Pooled Variance
Full sample

Fig. 2. The convergence of the estimates for the best root split in the Ailerons data
set (Goal < −13.5).

Figures 1 and 2 show the results obtained for the best root splits for the data
sets Abalone and Ailerons. The dashed line represents the value of the pooled
variance for the best split, calculated using all training data. This is the value
we want to approximate with our peephole estimates. The dots are the pooled
variance estimates calculated with the peephole sample and the triangles present
the respective pessimistic and optimistic estimates.

We can see in Figure 1 that for samples as small as 128 cases, which are
roughly 3% of the full sample size we already obtain a quite acceptable conver-
gence towards the pooled variance value obtained with the full sample. The same
occurs in Figure 2 for sample sizes around 192, which correspond to 2.6% of the
full sample size. Comparable results occur for all other data sets. These results
clearly indicate that it is possible to obtain reliable estimates with small peep-
hole sizes, which provides good indications towards the possibility of discarding
some of the variables from the tree growth process. In effect, provided the vari-
ables have best splits which are reasonably different in terms of decrease in error
according to Equation (5), we will be able to detect the “useless” variables if
we have good estimates of their best splits using solely the information on the
peephole. Obviously, in domains where all continuous variables are equally good
in terms of their best split, the peepholing concept will not work as we will not
be able to discard variables.



6 Conclusions

In this paper we have presented an adaptation of the work of Catlett [3] concern-
ing the peepholing method. This strategy was created with the goal of overcom-
ing the major computational bottleneck of growing classification trees. We have
described the steps necessary to adapt this method to regression trees. Namely,
we have shown how to obtain pessimistic and optimistic estimates of the variance
of a node that are a key step in adapting Catlett’s method.

Our preliminary experiments have shown that the estimates that we have
developed clearly converge to the values obtained with the full sample, thus en-
abling their use in the shortlisting step of the peepholing method. The other
step, blinkering, is directly applicable to regression trees thus not requiring any
particular adaptation. As such, we have described all means to efficiently imple-
ment the peepholing method in any regression tree algorithm. In our future work
we plan to carry out this implementation task for effectively using and testing
the computational gains of peepholing in regression trees.
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