
TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

30

Adaptive Model Rules From High-Speed Data Streams 1

JOÃO DUARTE, LIAAD-INESC TEC 2
JOÃO GAMA, LIAAD-INESC TEC, Faculty of Economics, University of Porto 3
ALBERT BIFET, Huawei Noahs Ark Lab 4

Decision rules are one of the most expressive and interpretable models for machine learning. In this article, 5
we present Adaptive Model Rules (AMRules), the first stream rule learning algorithm for regression prob- 6
lems. In AMRules, the antecedent of a rule is a conjunction of conditions on the attribute values, and the 7
consequent is a linear combination of the attributes. In order to maintain a regression model compatible with 8
the most recent state of the process generating data, each rule uses a Page-Hinkley test to detect changes 9
in this process and react to changes by pruning the rule set. Online learning might be strongly affected 10
by outliers. AMRules is also equipped with outliers detection mechanisms to avoid model adaption using 11
anomalous examples. In the experimental section, we report the results of AMRules on benchmark regression 12
problems, and compare the performance of our system with other streaming regression algorithms.

Q1

13

CCS Concepts: 14

Additional Key Words and Phrases: Data streams, regression, rule learning 15

ACM Reference Format: 16
João Duarte, João Gama, and Albert Bifet. 2016. Adaptive model rules from high-speed data streams. ACM 17
Trans. Knowl. Discov. Data 10, 3, Article 30 (January 2016), 22 pages. 18
DOI: http://dx.doi.org/10.1145/2829955 19

1. INTRODUCTION 20

Regression analysis is a technique for estimating a functional relationship between a 21
dependent variable and a set of independent variables. It has been widely studied in 22
statistics, pattern recognition, machine learning, and data mining. The most expressive 23
data mining models for regression are model trees [Quinlan 1992] and regression 24
rules [Quinlan 1993a]. In Ould-Ahmed-Vall et al. [2007], a large comparative study 25
between several regression algorithms is presented. Model trees and model rules are 26
among the best performing ones. Trees and rules perform automatic feature selection, 27
being robust to outliers and irrelevant features; exhibit high degree of interpretability; 28
and structural invariance to monotonic transformation of the independent variables. 29

The authors acknowledge the financial support given by the project ERDF through the COMPETE Pro-
gramme and by National Funds through Fundação para a Ciência e a Tecnologia (FCT) within the project
FCOMP - 01-0124-FEDER-022701. Authors also acknowledge the support of the European Commission
through the project MAESTRA (Grant Number ICT-750 2013-612944).
Authors’ addresses: J. Duarte, LIADD-INESC TEC, University of Porto, Campus da FEUP, Rua Dr. Roberto
Frias, 4200-465 Porto, Portugal; email: joaomaiaduarte@gmail.com; A. Bifet, Huawei Noahs Ark Lab, Units
525-530, Core Building 2, Hong Kong Science Park, Shatin, Hong Kong; email: abifet@waikato.ac.nz;
J. Gama, LIADD-INESC TEC, Faculty of Economics, University of Porto, Campus da FEUP, Rua Dr. Roberto
Frias, 4200-465 Porto, Portugal; email: jgama@fep.up.pt.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1556-4681/2016/01-ART30 $15.00

DOI: http://dx.doi.org/10.1145/2829955

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 3, Article 30, Publication date: January 2016.

http://dx.doi.org/10.1145/2829955
http://dx.doi.org/10.1145/2829955

TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

30:2 J. Duarte et al.

One important aspect of rules, and the main advantage over trees, is modularity: each30
rule can be interpreted individually [Fürnkranz et al. 2012].31

Regression problems are one the most frequent learning tasks. The usual batch32
approaches require that the whole training data are available before learning. Batch33
algorithms assume that examples are generated at random accordingly to some station-34
ary probability distributions and learn a static model by processing the data multiple35
times [Gama 2010]. Some regression algorithms, such as the Perceptron algorithm, are36
incremental by nature. However, turning regression trees and rule-based algorithms37
incremental require substantial changes. Moreover, these algorithms do not have the38
capacity to adapt if the target concept evolves over time.39

Data streaming learning algorithms face several important challenges. In the data40
stream computational model, examples are generated sequentially from time-evolving41
distributions. Data stream learning models need not only to learn with new data, but42
also forget outdated and no longer relevant data. Therefore, in order to adapt to the most43
recent state of the nature, data stream algorithms must have mechanisms to increment44
new examples and decrement old ones. These algorithms should have the capability45
to learn with high-speed streams since in many applications, such as sensor networks,46
telecommunication, clickstreams, and financial transactions, examples arrive at ex-47
tremely high rates. Also, many of these applications require real-time learning and pre-48
dicting capabilities. Another challenge with streaming data is that a stream is theoret-49
ically infinite. However, the memory space and computational capabilities are limited.50
For this reason, streaming learning algorithms should adapt to the available resources.51

In this article, we present the Adaptive Model Rules (AMRules) algorithm, the first52
one-pass algorithm for learning regression rule sets from time-evolving streams. The53
work described here is a large extension of the work presented in Almeida et al. [2013a].54
The algorithm has been written from scratch and the experimental evaluation has55
been largely extended. The current version is available in Massive Online Analysis56
(MOA) [Bifet et al. 2010], which is an open source framework for data stream mining.57
Another contribution of this article is Random AMRules, an ensemble of adaptive model58
rules, which is inspired by the Random forests ensemble method [Breiman 2001].59

The proposed algorithm can learn ordered or unordered rule sets. The antecedent60
of a rule is a set of literals (conditions based on the attribute values), and the con-61
sequent is a function that minimizes the mean square error of the target attribute62
computed from the set of examples covered by rule. This function might be either a63
constant, the mean of the target attribute, or a linear combination of the attributes.64
Each rule is equipped with online change and anomaly detectors. The change detector65
monitors the mean square error using the Page-Hinkley (PH) test, providing informa-66
tion about the dynamics of the process generating data. For detecting anomalies, we67
propose a new method that searches for unlikely input values in particular regions68
of the instance space. AMRules addresses all the previously referred data streaming69
challenges. It supports the increment of new examples by continuously growing each70
rule, and the decrement of non-relevant examples by pruning the rules in which change71
is detected. Thus, AMRules adapts to time-evolving data. It allows the user to adjust72
the tradeoff between memory/time costs and accuracy by using an extended binary73
search tree structure with limited (and parameterized) depth. This structure is used to74
store summaries of the data needed for learning. Also, since each rule can be learned in75
parallel, the algorithm can be easily implemented in any distributed real-time stream76
processing engine.77

The article is organized as follows. The next Section presents the related work in78
learning regression trees and rules from data focusing on streaming algorithms. Sec-79
tion 3 describes, in detail, the AMRules algorithm. Section 4 presents the experimental80
evaluation using stationary and time-evolving streams. AMRules is compared against81

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 3, Article 30, Publication date: January 2016.

TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

Adaptive Model Rules From High-Speed Data Streams 30:3

other regression systems including batch learners and streaming regression models. 82
The last section presents the lessons learned. 83

2. RELATED WORK 84

In the field of machine learning, one of the most popular, and competitive, regression 85
model is system M5, presented by Quinlan [1992]. It builds multivariate trees using 86
linear models at the leaves. In the pruning phase for each leaf, a linear model is built. 87
Later, a rational reconstruction of Quinlan’s M5 algorithm, M5′, was proposed [Frank 88
et al. 1998]. M5′ first constructs a regression tree by recursively splitting the instance 89
space using tests on single attributes that maximally reduce variance in the target 90
variable. After the tree has been grown, a linear multiple regression model is built for 91
every inner node, using the data associated with that node and all the attributes that 92
participate in tests in the subtree rooted at that node. The linear regression models 93
are then simplified by dropping attributes if this results in a lower expected error on 94
future data (more specifically, if the decrease in the number of parameters outweighs 95
the increase in the observed training error). After this has been done, every subtree 96
is considered for pruning. Pruning occurs if the estimated error for the linear model 97
at the root of a subtree is smaller than or equal to the expected error for the subtree. 98
After pruning terminates, M5′ applies a smoothing process that combines the model at 99
a leaf with the models on the path to the root to form the final model that is placed at 100
the leaf. 101

A widely used strategy consists of building rules from decision (or regression) trees 102
[Quinlan 1993b]. Any tree can be easily transformed into a collection of rules. Each 103
rule corresponds to the path from the root to a leaf, and there are as many rules as 104
leaves. This process generates a set of rules with the same complexity as the decision 105
tree. However, as pointed out by Wang et al. [2003], a drawback of decision trees is that 106
even a slight drift of the target function may trigger several changes in the model and 107
severely compromise learning efficiency. Cubist [Quinlan 1993a] is a rule-based model 108
that is an extension of Quinlan’s M5 model tree. A tree is grown where the terminal 109
leaves contain linear regression models. These models are based on the predictors used 110
in previous splits. Also, there are intermediate linear models at each level of the tree. 111
A prediction is made using the linear regression model at the leaf of the tree, but it is 112
smoothed by taking into account the prediction from the linear models in the previous 113
nodes in the path, from the root to a leaf, followed by the test example. The tree is 114
reduced to a set of rules, which initially are paths from the top of the tree to the 115
bottom. Rules are eliminated via pruning of redundant conditions or conditions that 116
do not decrease the error. 117

2.1. Rule Learning from Streaming Data 118

For classification problems, few rule learning systems from data streams exists in the 119
literature. One of the first classifiers is the system Facil [Ferrer-Troyano et al. 2005]. 120
Facil uses a multi-strategy approach. The decision model is a set of rules plus a set 121
of training examples. Each decision rules stores a reduced set of positive and negative 122
examples. When classifying a test example, Facil find all rules that cover the example. 123
Each rule classifies the example using the nearest-neighbor method using the set of 124
examples stored with that rule. The final classification is obtained using weighted 125
vote. Facil uses a forgetting mechanism that can be either explicit or implicit. Explicit 126
forgetting takes places when the examples are older than a user defined threshold. 127
Implicit forgetting is performed by removing examples that are no longer relevant as 128
they do not enforce any concept description boundary. 129

Rule learning classifiers directly related to the work presented here has been pub- 130
lished in Kosina and Gama [2012]. The Hoeffding bound was used to estimate the 131

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 3, Article 30, Publication date: January 2016.

TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

30:4 J. Duarte et al.

number of examples required to expand a rule. The main difference is that AMRules,132
the system described here deals with regression problems.133

2.2. Regression Algorithms for Streaming Data134

Many methods can be found in the literature for solving classification tasks on streams,135
but only few exists for regression tasks. To the best of our knowledge, we note only two136
papers for online learning of regression and model trees. One of the first incremental137
model trees, was presented by Potts and Sammut [2005]. The authors present an138
incremental algorithm that scales linearly with the number of examples. They present139
an incremental node splitting rule, together with incremental methods for stopping the140
growth of the tree and pruning. The leaves contain linear models, trained using the141
Recursive Least-Square (RLS)algorithm.142

FIMTDD [Ikonomovska et al. 2011] is an incremental algorithm for any-time model143
trees learning from evolving data streams with drift detection. It is based on the Hoeffd-144
ing tree algorithm [Domingos and Hulten 2000], but implements a different splitting145
criterion, using a standard deviation reduction-based measure more appropriate to re-146
gression problems. The FIMTDD algorithm is able to incrementally induce model trees147
by processing each example only once, in the order of their arrival. Splitting decisions148
are made using only a small sample of the data stream observed at each node, following149
the idea of Hoeffding trees. FIMTDD is able to detect and adapt to evolving dynam-150
ics. Change detection in the FIMTDD is carried out using the PH change detection151
test [Mouss et al. 2004]. Adaptation in FIMTDD involves growing an alternate subtree152
from the node in which change was detected. When the performance of the alternate153
subtree improves over the original subtree, the latter is replaced by the former.154

IBLStreams (Instance-Based Learner on Streams) is an extension of MOA that con-155
sists of an instance-based learning algorithm for classification and regression problems156
on data streams by Shaker and Hüllermeier [2012]. IBLStreams optimizes the compo-157
sition and size of the case base autonomously. When a new example (x0, y0) is available,158
the example is added to the case base. The algorithm checks whether other examples159
might be removed, either because they have become redundant or they are outliers. To160
this end, a set C of examples within a neighborhood of x0 are considered as candidates.161
This neighborhood is given by the kcand nearest neighbors of x0, accordingly with a162
distance function D. The most recent examples are not removed due to the difficulty to163
distinguish potentially noisy data from the beginning of a concept change.164

2.3. Random Rules for Classification Using Data Streams165

Random forests [Breiman 2001] consists of a collection or ensemble of simple tree pre-166
dictors, each capable of producing a response when presented with a set of predictor167
values. To determine the class of an instance, the method combines the result of various168
decision trees using a voting mechanism. The classifier is based on the Bagging method169
[Breiman 1996]. Random forests increase diversity among the classification trees by re-170
sampling the data with replacement and by randomly changing the predictive variable171
sets over the different tree induction processes. Each classification tree is grown using172
another bootstrap subset Xi of the original dataset X and the nodes are split using the173
best split predictive variable among a subset of m randomly selected predictive vari-174
ables [Liaw and Wiener 2002]. This is in contrast with the standard classification tree175
building, where each node is split using the best split among all predictive variables.176

To the best of our knowledge, there have been no publications about random rules177
for regression until now. However, there are works about random rules for classifica-178
tion. Random Rules [Almeida et al. 2013b] generates an ensemble of rule sets, each179
one associated with a set of Natt attributes, maintaining all properties required when180

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 3, Article 30, Publication date: January 2016.

TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

Adaptive Model Rules From High-Speed Data Streams 30:5

learning from stationary data streams: online and any-time classification, processing 181
each example once. 182

2.4. Anomaly Detection 183

The literature in anomaly and outlier detection is huge. Two recent overviews, with 184
excellent references are Hodge and Austin [2004] and Chandola et al. [2009]. Most of 185
the works refer to offline approaches. Two types of anomalies should be considered in 186
anomaly detection [Chandola et al. 2009]. 187

—Point Anomalies: if an individual data instance can be considered as anomalous with 188
respect to the rest of the data, then the instance is termed as a point anomaly. This is 189
the simplest type of anomaly and is the focus of the majority of research on anomaly 190
detection. 191

—Contextual Anomalies: if a data instance is anomalous in a specific context. In this 192
case, it is convenient to define: 193
—Contextual attributes: the contextual attributes are used to determine the context 194

for that instance. 195
—Behavioral attributes: the attributes with abnormal values in the contexts defined 196

by the contextual attributes. 197

A relevant aspect is that an observation might be an anomaly in a given context, 198
but an identical data instance (in terms of behavioral attributes) could be considered 199
normal in a different context [Chandola et al. 2009]. This property is a key characteristic 200
in identifying contextual and behavioral attributes for a contextual anomaly detection 201
technique. 202

3. THE AMRULES ALGORITHM 203

In this section, we present an incremental algorithm for learning model rules, named 204
Adaptive Model Rules from High-Speed Data Streams (AMRules). AMRules starts 205
with a default rule that is used to progressively grow a rule set. Rules also gradually 206
grow by adding literals to its antecedents. AMRules uses an adaptive window over 207
the most recent examples to make decisions: when to expand a rule. Each rule stores 208
sufficient statistics from a specific landmark window. When a decision is taken, that is, 209
the rule is expanded, the landmark window is reset. The algorithm adapts to concept 210
drifts by monitoring the error of each rule. A rule is removed from the rule set if 211
its online error significantly increases. The stability of the model to concept drifts is 212
guaranteed by the default rule, which is always prepared to make predictions. AMRules 213
is parallelizable since each rule can be learned individually. Therefore, AMRules can 214
be easily implemented in a distributed system. The pseudo-code of the algorithm is 215
given in Algorithm 1. 216

3.1. Learning a Rule Set 217

The algorithm begins with an empty rule set (RS), and a default rule {} → L. Every 218
time when a new training example is available the algorithm verifies if the example 219
is covered by any rule in the rule set (RS), by checking if all the literals are true for 220
the example. Also, change and anomaly detection tests are performed. If a change is 221
detected the rule is removed from the rule set (RS). If an anomaly is detected the 222
example is not considered for learning. We use the PH change detection test to monitor 223
the online error of each rule. Otherwise, the example is used in the rule’s learning 224
process. This process consists of updating the sufficient statistics needed for predicting 225
the output value for a new example and expanding the rule. Examples of these statistics 226
are the number of instances covered by the rule, the linear and squared sums of the 227
predicting errors, and information required to decide the best split while expanding a 228

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 3, Article 30, Publication date: January 2016.

TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

30:6 J. Duarte et al.

ALGORITHM 1: AMRules Algorithm
Input: S: Stream of examples
ordered-set: Boolean flag
Nmin: Minimum number of examples
λ: Threshold
α: the magnitude of changes that are allowed

Result: RS Set of Decision Rules
begin

Let RS ← {}
Let defaultRule L ← 0
foreach example (�x, yk) ∈ S do

foreach Rule r ∈ RS do
if r covers the example then

if not IsAnomaly(example, r) then
Call PHTest(error, λ)
if Change is detected then

Remove the rule
end
else

Update sufficient statistics of r
if Number of examples in L mod Nmin = 0 then

r ← ExpandRule(r)
end

end
end
if ordered-set then

BREAK
end

end
end
if none of the rules in RS triggers then

Update sufficient statistics of the defaultRule
if Number of examples in L mod Nmin = 0 then

RS ← RS ∪ ExpandRule(L)
if defaultRule expanded then

Create new L using the statistics not covered by ExpandRule(L)
end

end
end

end
end

rule. The expansion of the rule is considered only after a certain period (Nmin number229
of examples). Algorithm 2 describes the expansion of a rule.230

The set of rules (RS) is learned in parallel, as described in Algorithm 1. We consider231
two cases: learning ordered or unordered set of rules. In the former, every example232
updates statistics of the first rule that covers it. In the latter, every example updates233
statistics of all the rules that covers it. If an example is not covered by any rule, the234
default rule is updated.235

3.2. Expansion of a Rule236

Before discussing how rules are expanded, we will first discuss the evaluation measure237
used in the attribute selection process. We define the variance ratio (VR) measure of a238

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 3, Article 30, Publication date: January 2016.

TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

Adaptive Model Rules From High-Speed Data Streams 30:7

ALGORITHM 2: Expandrule: Expanding one Rule
Input:

r: One Rule
τ : Constant to solve ties
δ : Confidence

Result: r′ : Expanded Rule
begin

Let Xa be the attribute with greater variance ratio (VR))
Let Xb be the attribute with second greater VR

Compute ε =
√

R2 ln(1/δ)
2n , R = 1 (Hoeffding bound)

if VR(Xa) − VR(Xb) > ε ∨ ε < τ then
Extend r with a new condition based on the best attribute
Release sufficient statistics of Lr
r ← r ∪ {Xa}

end
return r

end

split hA as: 239

VR(hA) = 1 − |EL|
|E|

var(EL)
var(E)

− |ER|
|E|

var(ER)
var(E)

,

240

var(E) = 1
|E|

|E|∑
i=1

(yi − ȳ)2 = 1
|E|

⎡
⎢⎣ |E|∑

i=1

yi
2 − 1

|E|

⎛
⎝ |E|∑

i=1

yi

⎞
⎠

2
⎤
⎥⎦ ,

where E represents the set of examples seen by the rule since its last expansion, EL 241
and ER correspond to the subset of E containing the examples whose attribute values 242
are, respectively, less or equal and greater than the value defined in hA, and | · | is 243
the number of elements in a set. VR can be efficiently computed in an incremental 244
way. To make the actual decision regarding a split, the VR measurements for the best 245
two potential splits are compared, dividing the second-best value by the best one to 246
generate a ratio r in the range 0 to 1. Having a predefined range for the values of 247
the random variables, R, the Hoeffding probability bound (ε) [Hoeffding 1963] can be 248
used to obtain high confidence intervals for the true average of the sequence of random 249
variables. The value of ε is calculated using the formula: 250

ε =
√

R2 ln (1/δ)
2n

.

The process to expand a rule by adding a new condition works as follows. For each 251
attribute Xi, the value of the VR is computed for each attribute value v j . If the upper 252
bound (r̄+ = r̄ + ε) of the sample average is below 1, then the true mean is also below 1. 253
Therefore, with confidence 1 − δ, the best attribute over a portion of the data is really 254
the best attribute. In this case, the rule is expanded with condition Xa ≤ v j or Xa > v j . 255
However, often two splits are extremely similar or even identical, in terms of their VR 256
values, and despite the ε intervals shrinking considerably as more examples are seen, 257
it is still impossible to choose one split over the other. In these cases, a threshold (τ) on 258
the error is used. If ε falls below this threshold and the splitting criterion is still not 259
met, the split is made on the one with a higher VR value and the rule is expanded. The 260
pseudo-code for expanding a rule is presented in Algorithm 2. 261

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 3, Article 30, Publication date: January 2016.

TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

30:8 J. Duarte et al.

The extended binary search tree structure (E-BST) [Ikonomovska et al. 2011]262
may be used to maintain all possible split points for the numeric attributes. E-BST263
stores the sufficient statistics for computing VR. We use a modified version of the E-264
BST structure that limits the maximum number of splitting points to a predefined265
value (50 by default). This modification reduces memory consumption and speeds up266
the split selection procedure while having low impact on the error of the learning267
algorithm.268

3.3. Prediction Strategies269

The set of rules learned by AMRules can be ordered or unordered. They employ different270
prediction strategies to achieve “optimal” prediction. In the former, only the first rule271
that covers an example is used to predict the target example. In the latter, all rules272
covering the example are used for prediction and the final prediction is decided by273
aggregating predictions using the mean.274

Each rule in AMRules implements three prediction strategies: (i) the mean of the275
target attribute computed from the examples covered by the rule; (ii) a linear combina-276
tion of the independent attributes; and (iii) an adaptive strategy, that chooses between277
the first two strategies, the one with the lower mean absolute error (MAE) in the pre-278
vious examples. In this case, the MAE is computed following a fading factor strategy.279
In order to do so, two values are monitored: the total sum of absolute deviations T and280
the number of the examples used for learning N. When a new example (x, y) arrives281
for training, T and N are updated as follows: T ← αT + |ŷ − y| and N ← αN + 1,282
where ŷ is the value predicted by the rule and 0 < α < 1 is a parameter that controls283
the importance of the oldest/newest examples.284

Each rule in AMRules contains a linear model, trained using an incremental gradient285
descent method, from the examples covered by the rule. Initially, the weights are286
set to small random numbers in the range −1–1. When a new example arrives, it is287
standardized considering the mean and standard deviation of the attributes of the288
examples seen so far. Next, the output is computed using the current weights. Each289
weight is then updated using the Delta rule: wi ← wi + η(ŷ − y)xi, where η is the290
learning rate. The prediction is computed as the “denormalized” value of ŷ.291

3.4. Change Detection292

We use the PH [Page 1954] change detection test to monitor the online error of each293
rule. Whenever a rule covers a labeled example, the rule makes a prediction and294
computes the loss function (MAE). The PH test is used to monitor the evolution of the295
loss function. If the PH test signals a significant increase of the loss function, the rule296
is removed from the rule set (RS).297

The PH test is a sequential analysis technique typically used for online change de-298
tection. It is designed to detect a change in the average of a Gaussian signal [Mouss299
et al. 2004]. This test considers a cumulative variable mT , defined as the accu-300
mulated difference between the observed values and their mean until the current301
moment:302

mT =
T∑

t=1

(xt − x̄T − ϕ)

where x̄T = 1/T
∑T

t=1 xt and ϕ corresponds to the magnitude of changes that are303
allowed.304

The minimum value of this variable is also computed: MT = min(mt, t = 1 . . . T).305
The test monitors the difference between MT and mT : PHT = mT − MT . When this306
difference is greater than a given threshold (λ), we signal a change in the process307

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 3, Article 30, Publication date: January 2016.

TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

Adaptive Model Rules From High-Speed Data Streams 30:9

generating examples. The threshold λ depends on the admissible false alarm rate. 308
Increasing λ will entail fewer false alarms, but might miss or delay change detection. 309

3.5. Detecting Contextual Anomalies 310

Detection of outliers and rare events are critical tasks in online learning. Blind learning 311
from these examples might impact the performance of the whole system. 312

AMRules detects contextual anomalies. Contextual anomalies are characterized by a 313
context that refers to the region of the instance space where the anomaly was detected, 314
and behavioral attributes with anomalous values. One example of the type of anomalies 315
we detect is: 316

Case: 14,571 317
Rule: x7 <= 1156 and x8 <= 66 → y : 7.75 318
x3 = 2 (1.00 ± 0.03) Prob = 0.002% 319
x4 = 5 (4.00 ± 0.03) Prob = 0.002% 320
x5 = 10 (2052.14 ± 144.55) Prob = 0.009% 321
x6 = 100 (2064.88 ± 374.56) Prob = 0.070%. 322

The 14,571th example is signaled as an anomaly. It is interpreted as follows. The 323
context of the anomaly is given by the conditional part of the rule: 324
x7 <= 1156 and x8 <= 66. The attributes with suspicious values are x3 = 2, x4 = 5, 325
x5 = 10, and x6 = 100, with probabilities 0.002%, 0.002%, 0.009%, and 0.070%, respec- 326
tively. In the set of examples covered by the rule, the mean value of x3 is 1.00 ± 0.03, 327
the mean value of x4 is 4.00 ± 0.03, the mean value of x5 is 2052.14 ± 144.55, and the 328
mean value of x6 is 2064.88 ± 374.56. 329

Different kinds of rule systems are commonly used in multivariate anomaly detec- 330
tion. The use of AMRules in online detection is one of the advantages the system 331
provides. It can detect possible anomalies during the learning process. The detection 332
process works as follows. When the system reads a new example, the rule set is checked 333
to find the rules that cover the example. The probability P(Xi = v|Lr) is computed for 334
each value v regarding an attribute Xi given the conditions of a rule r. These proba- 335
bilities are computed from the consequent of the rule, Lr, that maintains the sufficient 336
statistics required to expand the rule. Low values of these probabilities suggest that 337
the example is an uncommon case in the context of the rule, and it is reported as an 338
anomaly. 339

A new measure is proposed to perform anomaly detection. It consists of computing 340

the ratio P(Xi=v|Lr)
1−P(Xi=v|Lr) for all attributes. When a value v for an attribute Xi is likely 341

(P(Xi = v|Lr) > 0.5), the ratio gives a positive value. If P(Xi = v|Lr) < 0.5, the ratio 342
gives a negative value. The anomaliness may be assessed by averaging over all ratios, 343
as presented in Equation (1). Logarithms of the ratios are used to avoid numerical 344
instabilities. 345

Ascore = 1
d

d∑
j=1

log
(

P(Xi = v|Lr)
1 − P(Xi = v|Lr)

)
(1)

= 1
d

d∑
j=1

log(P(Xi = v|Lr)) − log(1 − P(Xi = v|Lr)).

An example is considered to be an anomaly if Ascore < t, where t is a user-defined 346
parameter. Usually t is defined to be 0 or a negative value close to 0. 347

For continuous attributes, the statistics stored in Lr include the mean and standard 348
deviation of each attribute given the class. Remember that these statistics are computed 349

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 3, Article 30, Publication date: January 2016.

TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

30:10 J. Duarte et al.

from the examples covered by the rule. Using these statistics, we can compute P(Xi =350
v|Lr) using different strategies, including Normal distribution, Z-scores, etc. From a set351
of experiments not described here, we selected a variation of the Cantelli’s inequality352
[Bhattacharyya 1987] to estimate P(Xi = v)|Lr):353

Pr(|v − Xi| ≥ k) ≤
{

2σ 2
i

σ 2
i +k2 , if σi < k

1, otherwise

where Xi is the mean value of the ith attribute according to Lr.354
A relatively new rule, which is a rule that has not been trained with enough examples,355

would more often tend to report a training example as anomalous. To prevent this356
situation, only rules that were trained with more than mmin examples are used in the357
anomaly detection.358

3.6. Ensembles of Adaptive Model Rules359

Ensemble methods have been used as a general method to boost the performance of360
learning algorithms. In an ensemble, a set of base predictors collaborate in order to solve361
a task. The machine learning literature about ensembles is huge. Authors converge on362
at least two points: the ensemble must be diverse and the members of an ensemble363
must be uncorrelated. A useful analysis to understand why and how an ensemble364
works is the bias-variance decomposition of the error. The bias-variance profile of365
an algorithm can be very useful in designing strategies to increase diversity during366
learning. Regression models with a high-variance profile are affected by perturbing the367
set of training examples, while low-variance models are affected by perturbing the set368
of attributes used to train the model.369

The profile of AMRules in terms of bias-variance decomposition of the error is low370
variance. On the basis of this observation, we designed an ensemble of rules model that371
follows the Random Forests idea: we combine bagging with choosing a random subset372
of the features for learning the split point for each rule. Note that after the expansion373
of a rule, a new subset of features is selected at random. We call this ensemble method374
Random AMRules (RAMRules).375

4. EXPERIMENTAL EVALUATION376

The main goal of this experimental evaluation is to study the behavior of the proposed377
algorithm in terms of performance and learning times. We are interested in studying378
the following scenarios.379

—How to grow the rule set? What are the advantages and disadvantages of unordered380
rule sets over ordered rule sets?381

—What is the impact of linear models in rules?382
—Which is the impact of change detection ?383
—What is the impact of anomaly removal in the performance?384
—How does AMRules compare against others Streaming Algorithms?385
—How does AMRules compare against others State-of-the-art Regression Algorithms?386
—How does AMRules learned models evolve in time?387

4.1. Experimental Setup388

All our algorithms were implemented in java using the MOA data stream software389
suite [Bifet et al. 2010]. The performance of the algorithms is measured using the390
standard metrics for regression problems: MAE and Root Mean Squared Error (RMSE)391
[Willmott and Matsuura 2005].392

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 3, Article 30, Publication date: January 2016.

TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

Adaptive Model Rules From High-Speed Data Streams 30:11

Table I. Summary of Datasets

Datasets # Instances # Attributes
2dplanes 40768 10
Ailerons 13750 40
Bank8FM 8192 8
CalHousing 20640 8
Elevators 16599 18
Fried 40768 10
House_8L 22784 8
House_16H 22784 16
Kin8nm 8192 8
MV 40768 10
Pol 15000 48
Puma8NH 8192 8
Puma32H 8192 32
FriedD 256000 10
WaveformD 256000 41
Airline 115 Million 10

The experimental datasets include both artificial and real data, as well sets with 393
continuous attributes. We use ten regression datasets from the UCI Machine Learning 394
Repository [Bache and Lichman 2013] and other sources. The datasets used in our 395
experimental work are briefly described here. 2dplanes this is an artificial dataset 396
described in Breiman et al. [1984]. Ailerons this dataset addresses a control problem, 397
namely flying a F16 aircraft. Bank8FM a family of datasets synthetically generated 398
from a simulation of how bank-customers choose their banks. CalHousing datasets is 399
composed of eight attributes that describe all the block groups in California from the 400
1990’s Census. The target value is the median house value. Elevators this dataset 401
was obtained from the task of controlling a F16 aircraft. Fried is an artificial dataset 402
used in Friedman (1991) and also described in Breiman et al. [1984]. House8L and 403
House16H datasets were collected as part of the 1990 US census and are concerned 404
with predicting the median price of the house based on demographic and state of hous- 405
ing market information. Kin8nm dataset is concerned with the forward kinematics of 406
an eight link robot arm. MV is an artificial dataset with dependences between the at- 407
tribute values. Pol this is a commercial application described in Weiss and Indurkhya 408
[1995]. The data describe a telecommunication problem. Puma8NH and Puma32H is 409
a family of datasets synthetically generated from a realistic simulation of the dynamics 410
of a Unimation Puma 560 robot arm. FriedD is composed of 256,000 examples gen- 411
erated similarly to the Fried dataset, but contains a drift that starts in the 128,001st 412
instance. WaveformD is an artificial dataset containing 256,000 examples generated 413
as described in Breiman et al. [1984], also containing a drift that starts in the 128,001st 414
instance. The dataset consists of three classes of waves labeled, and the examples are 415
characterized by 21 attributes that include some noise plus 19 attributes that are all 416
noise. Airline uses the data from the 2009 Data Expo competition. The dataset consists 417
of a huge amount of records, containing flight arrival and departure details for all the 418
commercial flights within the USA, from October 1987 to April 2008. This is a large 419
dataset with nearly 115-million records [Ikonomovska et al. 2011]. Table I summarizes 420
the number of instances and the number of attributes of each dataset. 421

This method evaluates a model on a stream by testing then training with each 422
example in the stream. AMRules has three main groups of parameters: rule expansion, 423
change detection, and anomaly detection. For the first two groups, we used values 424
usually mentioned in the literature. For all the experiments, we set the parameters 425
regarding the rule expansion to Nmin = 200, τ = 0.05 and δ = 0.0000001, and the PH 426

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 3, Article 30, Publication date: January 2016.

TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

30:12 J. Duarte et al.

test parameters to λ = 35 and ϕ = 0.005. For anomaly detection, the reference value427
for the threshold parameter t is 0 or a negative value close to 0. We were conservative428
and defined t = −0.75. The minimum number of examples that the rule needs to see429
before performing anomaly detection, mmin, was set to 30.430

We used two evaluation methods. When no concept drift is assumed, the evalua-431
tion method we employ uses the traditional sampling scenario using tenfold cross-432
validation. All algorithms learn from the same training set and the errors are estimated433
from the same test set. All the results in the tables are averages from tenfold cross-434
validation [Kohavi 1995], except for the Airline and Waveform datasets. As pointed out435
in Gama et al. [2013], in scenarios with concept drift, the appropriate methodology to436
estimate performance is the prequential error estimate. Also, the fading factor for the437
MAE computation in the adaptive prediction strategy was defined to α = 0.99.438

We use the Wilcoxon test to study the significance of the differences in the mean of439
the evaluation metrics: MAE and RMSE. In all the tables reporting results, the symbol440
� (or �) indicate when the performance of the algorithm indicated in the column is441
significantly worst (or better) at a significance level of 95% than the performance of the442
reference algorithm.443

The set of rules learned by AMRules can be ordered or unordered. As they use dif-444
ferent learning strategies, they must employ different prediction strategies to achieve445
optimal prediction. In the former, only the first rule that covers an example is used to446
predict the example target. In the latter, all rules covering the example are used for447
prediction and the final target value is decided by a weighted vote.448

In regression, the target attribute is numerical, and the loss function is typically449
measured in terms of the absolute or squared difference between the predicted value450
and the true output. Corresponding prediction problems can be solved in three ways. In451
the first method, the target value can be estimated by the weighted mean of the target452
values of the examples covered by the rule. The second method generates predictions453
that are the output of the linear models associated with each rule. The third strategy is454
a combination of these two strategies. When a sample arrives, the absolute or squared455
difference between predicted and true output is computed using these two strategies,456
then the one with best results is chosen.457

4.2. Experimental Results458

In this section, we empirically evaluate the adaptive model rules algorithm. The results459
come in four parts.460

(1) Which is the best strategy to grow rule sets? In the first set of experiments, we461
compare the AMRules variants.462

(2) How do AMRules compare against others streaming algorithms?463
(3) How do AMRules compare against others state-of-the-art regression algorithms?464
(4) What is the impact of change and anomaly detection in time-evolving data streams?465

4.2.1. Comparison between AMRules Variants: Ordered versus Unordered Rule Sets. In this466
section, we focus on two strategies that we found potentially interesting: use only the467
first rule that covers an example both for training and predicting; and update the set of468
rules that covers an example while training and the same set to obtain the prediction469
using a weighted vote. The former strategy implies using ordered rules (AMRuleso), and470
the latter using an unordered rule set (AMRulesu). The weights of the votes wr ∈ [0, 1]471
for AMRulesu are inversely proportional to the estimated MAE er of each rule r. Let472
CR be the set of rules that covers a given test example. The weighted prediction of473

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 3, Article 30, Publication date: January 2016.

TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

Adaptive Model Rules From High-Speed Data Streams 30:13

Table II. Comparison between AMRules Variants: Ordered versus Unordered Rule Sets

MAE (variance) RMSE (variance)
Dataset AMRuleso AMRulesu AMRuleso AMRulesu

2dplanes 9.41E-01 (4.94E-03) � 1.33E+00 (8.82E-03) 1.22E+00 (1.52E-02) � 1.76E+00 (2.66E-02)
Ailerons 1.61E-04 (1.08E-09) 1.69E-04 (3.20E-09) 4.01E-04 (9.87E-08) 7.79E-04 (2.26E-06)
Bank8FM 2.54E-02 (1.60E-06) � 2.68E-02 (5.29E-06) 3.50E-02 (7.78E-06) 3.67E-02 (4.76E-05)
CalHousing 5.90E+04 (1.60E+08) 5.74E+04 (2.87E+08) 8.06E+04 (2.98E+08) 7.82E+04 (5.21E+08)
Elevators 2.50E-03 (2.78E-07) 2.80E-03 (1.78E-07) 5.00E-03 (2.13E-05) 5.20E-03 (2.11E-05)
Fried 1.87E+00 (1.53E-03) 1.88E+00 (1.76E-03) 2.41E+00 (2.21E-03) 2.43E+00 (3.79E-03)
House8L 2.18E+04 (7.15E+05) 2.18E+04 (5.68E+06) 4.12E+04 (6.42E+07) 4.17E+04 (2.17E+07)
House16H 2.45E+04 (2.22E+06) 2.48E+04 (1.57E+06) 4.37E+04 (3.83E+06) � 4.53E+04 (7.91E+06)
Kin8nm 1.60E-01 (1.27E-05) � 1.59E-01 (1.29E-05) 2.01E-01 (2.63E-05) 2.00E-01 (2.71E-05)
MV 1.06E+00 (1.19E-01) 1.06E+00 (7.90E-02) 1.70E+00 (3.24E-01) 1.73E+00 (2.15E-01)
Pol 1.00E+01 (1.15E+00) � 1.13E+01 (8.18E+00) 1.76E+01 (5.32E+00) � 1.94E+01 (9.69E+00)
Puma8NH 3.07E+00 (2.14E-02) � 3.21E+00 (2.64E-02) 3.82E+00 (2.52E-02) � 4.02E+00 (4.30E-02)
Puma32H 1.33E-02 (6.78E-07) � 1.50E-02 (2.22E-06) 1.74E-02 (1.82E-06) � 2.02E-02 (7.73E-06)
FriedD 1.862 1.912 2.410 2.468
WaveformD 0.414 0.462 0.555 0.586
Airline 14.779 14.491 26.551 26.509
Average Rank 1.12 1.88 1.18 1.82
Sig.Diffs (W/L) - 1/5 - 0/5

AMRulesu is computed as 474

y =
∑

r∈CR

wr yr, (2)

475

wr = (er + ε)−1∑
i∈CR(ei + ε)−1 , (3)

where ε is a small positive number used to prevent numerical instabilities. 476
Ordered rule sets specialize one rule at time. As a result they often produce fewer 477

rules than the unordered strategy. Ordered rules need to consider the previous rules 478
and remaining combinations, which might not be easy to interpret in more complex sets. 479
Unordered rule sets are more modular, because they can be interpreted independently. 480

Table II summarizes the MAE and the RMSE of these variants, and the correspond- 481
ing variances. The results for the first 13 datasets were obtained using the standard 482
method of tenfold cross-validation, using the same folds for all the experiments included 483
in the study. For the remaining three datasets, which are time-evolving data streams, 484
we present the average prequential error computed over a sliding window of 10,000 in- 485
stances using a sampling frequency of the same size. The symbols � and � identify the 486
datasets in which AMRulesu is better or worst than AMRuleso with statistical signifi- 487
cance. The last two rows of the table present the average rank of the approaches, and 488
the number of times that AMRulesu was underperformed/outperformed with statistical 489
significance by AMRuleso. 490

Overall, the experimental results point out that ordered rule sets are more com- 491
petitive than unordered rule sets in terms of both MAE and RMSE. AMRulesu was 492
significantly better than AMRuleso only in the Kin8nm dataset according to MAE, 493
while AMRuleso outperformed (with statistical significance) AMRulesu in five datasets 494
considering both the MAE and RMSE performance measures. 495

4.2.2. Comparison between AMRules Variants: Adaptive Model versus Target Mean. Table III 496
compares the results obtained by the AMRulesu using the adaptive and target mean 497
AMRulesTM prediction strategies. The adaptive prediction strategy is clearly better 498
than using the rule’s target mean. The ordered version achieved the best results 499
in all datasets according to MAE, always with statistical significance in the tenfold 500

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 3, Article 30, Publication date: January 2016.

TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

30:14 J. Duarte et al.

Table III. Comparison between AMRules Variants: Adaptive versus Target Mean Prediction Strategies

MAE (variance) RMSE (variance)
Dataset AMRuleso AMRulesTM AMRuleso AMRulesTM

2dplanes 9.41E-01 (4.94E-03) � 1.48E+00 (1.39E-02) 1.22E+00 (1.52E-02) � 1.92E+00 (2.73E-02)
Ailerons 1.61E-04 (1.08E-09) � 2.67E-04 (2.81E-09) 4.01E-04 (9.87E-08) 3.54E-04 (2.40E-09)
Bank8FM 2.54E-02 (1.60E-06) � 5.83E-02 (6.67E-05) 3.50E-02 (7.78E-06) � 7.95E-02 (1.40E-04)
CalHousing 5.90E+04 (1.60E+08) � 8.41E+04 (4.81E+08) 8.06E+04 (2.98E+08) � 1.04E+05 (6.52E+08)
Elevators 2.50E-03 (2.78E-07) � 4.30E-03 (4.56E-07) 5.00E-03 (2.13E-05) 6.10E-03 (1.21E-06)
Fried 1.87E+00 (1.53E-03) � 2.72E+00 (2.97E-02) 2.41E+00 (2.21E-03) � 3.40E+00 (4.69E-02)
House8L 2.18E+04 (7.15E+05) � 2.64E+04 (7.61E+06) 4.12E+04 (6.42E+07) 4.47E+04 (1.46E+07)
House16H 2.45E+04 (2.22E+06) � 3.16E+04 (1.07E+07) 4.37E+04 (3.83E+06) � 5.07E+04 (9.96E+06)
Kin8nm 1.60E-01 (1.27E-05) � 1.84E-01 (2.13E-05) 2.01E-01 (2.63E-05) � 2.26E-01 (2.32E-05)
MV 1.06E+00 (1.19E-01) � 4.03E+00 (1.33E+00) 1.70E+00 (3.24E-01) � 6.24E+00 (1.95E+00)
Pol 1.00E+01 (1.15E+00) � 1.48E+01 (6.93E+00) 1.76E+01 (5.32E+00) � 2.47E+01 (1.42E+01)
Puma8NH 3.07E+00 (2.14E-02) � 3.49E+00 (2.43E-02) 3.82E+00 (2.52E-02) � 4.37E+00 (2.01E-02)
Puma32H 1.33E-02 (6.78E-07) � 1.62E-02 (1.33E-05) 1.74E-02 (1.82E-06) � 2.15E-02 (3.69E-05)
FriedD 1.862 2.740 2.410 3.440
WaveformD 0.414 0.503 0.555 0.638
Airline 14.779 16.081 26.551 27.520
Average Rank 1.00 2.00 1.07 1.93
Sig.Diffs (W/L) - 0/13 - 0/10

Table IV. Comparison between AMRuleso and Other Streaming Regression Algorithms

RMSE (variance)
Dataset AMRuleso FIMTDD IBLStreams Perceptron
2dplanes 1.22E+00 (1.52E-02) � 1.04E+00 (9.65E-04) � 1.37E+00 (9.68E-05) � 2.39E+00 (1.06E-03)
Ailerons 4.01E-04 (9.87E-08) 4.14E-02 (1.36E-02) � 0.00E+00 (0.00E+00) 1.14E-03 (3.66E-06)
Bank8FM 3.50E-02 (7.78E-06) 4.02E-02 (9.93E-05) � 6.76E-02 (2.87E-05) � 3.92E-02 (1.29E-06)
CalHousing 8.06E+04 (2.98E+08) � 1.45E+05 (5.33E+09) � 1.09E+05 (5.22E+08) 7.51E+04 (3.09E+08)
Elevators 5.00E-03 (2.13E-05) 2.12E+00 (9.51E+00) 5.80E-03 (4.00E-07) 5.70E-03 (3.36E-05)
Fried 2.41E+00 (2.21E-03) 2.18E+00 (2.50E-01) � 2.13E+00 (9.62E-03) � 2.64E+00 (2.46E-04)
House8L 4.12E+04 (6.42E+07) 4.34E+04 (4.36E+08) � 5.12E+04 (3.51E+07) 4.28E+04 (5.31E+06)
House16H 4.37E+04 (3.83E+06) 6.83E+04 (5.12E+09) � 7.04E+04 (3.66E+07) � 4.84E+04 (3.75E+07)
Kin8nm 2.01E-01 (2.63E-05) 2.17E-01 (5.87E-03) � 1.38E-01 (1.08E-04) 2.03E-01 (1.77E-05)
MV 1.70E+00 (3.24E-01) 1.35E+00 (4.55E+00) � 3.12E+00 (9.33E-03) � 4.50E+00 (6.72E-03)
Pol 1.76E+01 (5.32E+00) 2.21E+01 (3.98E+01) � 2.91E+01 (4.95E-01) � 3.10E+01 (1.69E-01)
Puma8NH 3.82E+00 (2.52E-02) � 3.39E+00 (1.39E-02) � 4.35E+00 (3.70E-02) � 4.48E+00 (1.67E-02)
Puma32H 1.74E-02 (1.82E-06) 1.23E+00 (2.30E+00) � 3.85E-02 (1.03E-05) � 2.76E-02 (4.89E-07)
FriedD 2.410 12.628 2.365 2.644
WaveformD 0.555 7.256 1.259 0.647
Airline 26.551 106.949 29.876 26.967
Average Rank 1.57 2.19 1.88 2.75
Sig.Diffs (W/L) - 2/1 3/9 0/8

cross-validation evaluation. Regarding the RMSE, the results were identical with the501
following exceptions: AMRulesTM was better than AMRuleso in the Ailerons dataset;502
and AMRuleso outperformed AMRulesTM in all the remaining datasets, but in three of503
these, the difference was not statistically significant.504

4.2.3. Comparison with others Streaming Algorithms. We compare the performance of our505
algorithm with three others streaming algorithms, FIMTDD, IBLStreams, and Per-506
ceptron. FIMTDD is an incremental algorithm for learning model trees, described in507
Ikonomovska et al. [2011]. IBLStreams is an extension of MOA that consists of an508
instance-based learning algorithm for classification and regression problems on data509
streams by Shaker and Hüllermeier [2012]. Perceptron is the linear model used by AM-510
Rules. The RMSE evaluation for these algorithms is given in Table IV. The AMRuleso511
produces better overall results since it has the lowest average rank. Considering the512
10-fold cross-validation evaluation, AMRuleso was significantly better than FIMTDD,513

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 3, Article 30, Publication date: January 2016.

TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

Adaptive Model Rules From High-Speed Data Streams 30:15

Fig. 1. Evolution of the prequential MAE of streaming algorithms using the dataset FriedD.

Fig. 2. Evolution of the prequential MAE of streaming algorithms using the dataset WaveformD.

IBLStreams, and Perceptron in one, nine, and eight datasets, respectively, while being 514
significantly worst only in two, three, and zero datasets, respectively. 515

Figures 1–3 show the evolution of the prequential MAE for the streaming algorithms 516
with time-evolving data streams. Figure 1 depicts the prequential MAE curves using 517
the dataset FriedD, and also illustrates the change point, i.e., the moment the drift 518
begins. It is expected that the MAE of the learning algorithms start high for the first 519
examples, then decrease and stabilize, increased again when the drift occurs, and 520
finally, decrease and stabilize. The AMRuleso and IBLStreams followed this behavior, 521
but not the FIMTDD algorithm which had a huge peak in MAE around the 190,000 522
examples. In terms of the average MAE, the FIMTDD and IBLStreams performed 523
better than AMRuleso since the average prequential MAE were 1.723, 1.725, and 1.862, 524
respectively. Figure 2 shows the prequential MAE curves for the WaveformD, which 525
also contains a drift starting in the 128,001st example. In this dataset, the performance 526
of AMRuleso and FIMTDD is clearly superior to the performance of IBLStreams. The 527
MAE increased in both AMRuleso and FIMTDD after the drift, but the magnitude was 528
clearly smaller in the case of AMRuleso. FIMTDD also presents an unexpected peak 529

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 3, Article 30, Publication date: January 2016.

TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

30:16 J. Duarte et al.

Fig. 3. Evolution of the prequential MAE of streaming algorithms using the dataset Airline.

Table V. Comparison between AMRuleso and Batch Regression Algorithms

RMSE (variance)
Dataset AMRuleso M5Rules MLP OLS
2dplanes 1.22E+00 (1.52E-02) � 9.97E-01 (1.15E-04) 1.15E+00 (3.97E-03) � 2.38E+00 (1.04E-03)
Ailerons 4.01E-04 (9.87E-08) � 1.80E-04 (1.78E-09) � 1.90E-04 (1.00E-09) 2.00E-04 (0.00E+00)
Bank8FM 3.50E-02 (7.78E-06) � 3.07E-02 (2.10E-06) 3.36E-02 (1.12E-05) � 3.88E-02 (1.86E-06)
CalHousing 8.06E+04 (2.98E+08) � 6.90E+04 (1.32E+08) 9.20E+04 (9.49E+08) � 7.03E+04 (1.62E+08)
Elevators 5.00E-03 (2.13E-05) � 2.31E-03 (7.88E-08) � 2.39E-03 (1.21E-08) � 2.90E-03 (1.98E-07)
Fried 2.41E+00 (2.21E-03) � 1.61E+00 (4.30E-04) � 1.70E+00 (6.69E-02) � 2.63E+00 (2.29E-04)
House8L 4.12E+04 (6.42E+07) � 3.23E+04 (1.39E+06) � 3.54E+04 (4.79E+06) 4.16E+04 (1.49E+06)
House16H 4.37E+04 (3.83E+06) � 3.71E+04 (2.41E+06) � 3.90E+04 (1.06E+06) � 4.55E+04 (2.09E+06)
Kin8nm 2.01E-01 (2.63E-05) � 1.72E-01 (5.12E-05) � 1.63E-01 (1.08E-04) 2.02E-01 (2.10E-05)
MV 1.70E+00 (3.24E-01) � 1.97E-02 (4.02E-04) � 1.62E-01 (5.79E-04) � 4.49E+00 (6.29E-03)
Pol 1.76E+01 (5.32E+00) � 6.64E+00 (6.62E-01) � 1.28E+01 (2.84E+00) � 3.05E+01 (1.57E-01)
Puma8NH 3.82E+00 (2.52E-02) � 3.20E+00 (3.56E-03) 4.04E+00 (1.69E-01) � 4.46E+00 (1.41E-02)
Puma32H 1.74E-02 (1.82E-06) � 8.57E-03 (9.79E-08) � 3.33E-02 (2.25E-06) � 2.68E-02 (3.89E-07)
Average Rank 3.00 1.08 2.31 3.62
Sig.Diffs (W/L) - 13/0 8/1 2/8

around the 20,000 examples, which may point out some instabilities in the algorithm.530
Figure 3 presents the MAE curves for the Airline dataset (first 1.5-million examples),531
which is a real-world problem as described before. The MAE curves have a lot of peaks,532
which means that the stream is changing over time. As can be seen, in this dataset533
AMRuleso outperforms the other algorithms since its curve is almost always below the534
other algorithms’ curves and the magnitude of the MAE peaks is also smaller.535

4.2.4. Comparison with Others State-of-the-art Regression Algorithms. We compared AM-536
Rules with other non-incremental regression algorithms from WEKA [Hall et al. 2009]:537
M5Rules, Multilayer Perceptron (MLP), and Linear Regression (OLS). The summary538
of the RMSE results is presented in Table V.539

The analysis of these results show that AMRules has, in general, higher RMSE540
than M5Rules and MLP and higher performance than OLS. Despite not achieving the541
best average rank, AMRuleso is competitive with batch regression algorithms, being542
significantly better than OLS in 8 out of 13 datasets. These results were somewhat543
expected, even in these small datasets, due to the generalization ability of model rules.544

4.2.5. Comparison between AMRules Variants: Change Detection versus no Change Detection.545
Table VI compares the RMSE results achieved by the AMRulesu and a similar ver-546
sion without change detection, in this case, without the PH test (AMRulesPH). As547

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 3, Article 30, Publication date: January 2016.

TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

Adaptive Model Rules From High-Speed Data Streams 30:17

Table VI. Impact of Change Detection

Number of RMSE (variance)
Dataset Alarms AMRuleso AMRules¬PH

2dplanes 0.1 1.22E+00 (1.52E-02) 1.19E+00 (1.03E-02)
Ailerons 0.6 4.01E-04 (9.87E-08) 3.89E-04 (1.02E-07)
Bank8FM 0 3.50E-02 (7.78E-06) 3.50E-02 (7.78E-06)
CalHousing 0.1 8.06E+04 (2.98E+08) 8.23E+04 (2.69E+08)
Elevators 0 5.00E-03 (2.13E-05) 5.00E-03 (2.13E-05)
Fried 0 2.41E+00 (2.21E-03) 2.41E+00 (2.21E-03)
House8L 0 4.12E+04 (6.42E+07) 4.12E+04 (6.42E+07)
House16H 0 4.37E+04 (3.83E+06) 4.37E+04 (3.83E+06)
Kin8nm 0 2.01E-01 (2.63E-05) 2.01E-01 (2.63E-05)
MV 1.2 1.70E+00 (3.24E-01) 1.58E+00 (1.59E-01)
Pol 0 1.76E+01 (5.32E+00) 1.76E+01 (5.32E+00)
Puma8NH 0 3.82E+00 (2.52E-02) 3.82E+00 (2.52E-02)
Puma32H 0 1.74E-02 (1.82E-06) 1.74E-02 (1.82E-06)
FriedD 3 2.410 2.396
WaveformD 4 0.555 0.557
Airline 2558 26.551 26.545
Average Rank 1.60 1.40
Sig.Diffs (W/L) - 0/0

expected, the number of alarms for the smaller datasets is very small as these datasets 548
are not time-evolving data streams. As result, the differences between AMRuleso and 549
AMRulesPH in terms of RMSE have no statistically significance. Regarding the time- 550
evolving datasets, the results for the FriedD and Airline datasets were better without 551
using change detection. This indicates that, in these cases, that have only one drift, 552
the rule set adapted to the change faster than pruning the rule set and start learning 553
new rules from scratch. Note that in AMRules, several alarms may (and should) occur 554
for the same drift, as each rule has its own change detector. 555

4.3. Anomaly Detection 556

We evaluate the anomaly detection algorithm embedded in AMRuleso on a set of regres- 557
sion problems. The results are presented in Table VII, showing the number of anomalies 558
detected, and the prequential RMSE setting on/off the ability to detect anomalies. In 559
these datasets, no anomalies were detected except for the CalHousing, House8L and 560
Airline datasets. The number of anomalies was very small compared to the size of the 561
dataset and, consequently, the average RMSE values were similar. 562

Two examples of anomalies detected in the Airline dataset are presented below. 563

Case: 29256 Anomaly Score: −1.93 564
Rule: x7 <= 1156 and x8 <= 66 and x5 <= 1840 → y : 5.69 565
x3 = 3 (2.01 ± 0.09) Prob = 0.018% 566
x4 = 6 (5.01 ± 0.03) Prob = 0.018% 567
x5 = 45 (1680.67 ± 179.83) Prob = 0.023% 568
x6 = 12 (1762.60 ± 186.58) Prob = 0.022%. 569

Case: 541603 Anomaly Score: −3.33 570
Rule: x4 > 4 and x6 <= 1610 → y : 5.05 571
x5 = 1755 (1456.6 ± 33.2) Prob = 0.024% 572
x6 = 554 (1566.5 ± 27.5) Prob = 0.001% 573
x8 = 483 (79.23 ± 11.8) Prob = 0.002% 574
x9 = 4243 (390.7 ± 91.7) Prob = 0.001%. 575

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 3, Article 30, Publication date: January 2016.

TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

30:18 J. Duarte et al.

Table VII. The Impact of Anomaly Detection: Results of Tenfold
Cross-Validation for AMRules Algorithms

Number of RMSE (variance)
Dataset Anomalies AMRuleso AMRules¬Anom.

2dplanes 0 1.22E+00 (1.52E-02) 1.22E+00 (1.52E-02)
Ailerons 0 4.01E-04 (9.87E-08) 4.01E-04 (9.87E-08)
Bank8FM 0 3.50E-02 (7.78E-06) 3.50E-02 (7.78E-06)
CalHousing 35.3 8.06E+04 (2.98E+08) 8.23E+04 (5.73E+08)
Elevators 0 5.00E-03 (2.13E-05) 5.00E-03 (2.13E-05)
Fried 0 2.41E+00 (2.21E-03) 2.41E+00 (2.21E-03)
House8L 0.1 4.12E+04 (6.42E+07) 4.12E+04 (6.42E+07)
House16H 0 4.37E+04 (3.83E+06) 4.37E+04 (3.83E+06)
Kin8nm 0 2.01E-01 (2.63E-05) 2.01E-01 (2.63E-05)
MV 0 1.70E+00 (3.24E-01) 1.70E+00 (3.24E-01)
Pol 0 1.76E+01 (5.32E+00) 1.76E+01 (5.32E+00)
Puma8NH 0 3.82E+00 (2.52E-02) 3.82E+00 (2.52E-02)
Puma32H 0 1.74E-02 (1.82E-06) 1.74E-02 (1.82E-06)
FriedD 0 2.410 2.410
WaveformD 0 0.555 0.555
Airline 294194 26.551 26.535
Average Rank 1.40 1.60
Sig.Diffs (W/L) - 0/0

Table VIII. Comparison between AMRuleso and RAMRuleso

RMSE (variance)
Dataset AMRuleso RAMRuleso

2dplanes 1.22E+00 (1.52E-02) 1.23E+00 (7.52E-04)
Ailerons 4.01E-04 (9.87E-08) 4.43E-04 (1.24E-07)
Bank8FM 3.50E-02 (7.78E-06) � 3.88E-02 (8.44E-07)
CalHousing 8.06E+04 (2.98E+08) 7.62E+04 (3.27E+08)
Elevators 5.00E-03 (2.13E-05) 4.50E-03 (1.38E-05)
Fried 2.41E+00 (2.21E-03) � 1.95E+00 (1.92E-04)
House8L 4.12E+04 (6.42E+07) 3.81E+04 (3.46E+06)
House16H 4.37E+04 (3.83E+06) 4.42E+04 (1.09E+07)
Kin8nm 2.01E-01 (2.63E-05) � 1.97E-01 (2.37E-05)
MV 1.70E+00 (3.24E-01) � 3.45E+00 (1.06E-02)
Pol 1.76E+01 (5.32E+00) � 2.26E+01 (2.11E-01)
Puma8NH 3.82E+00 (2.52E-02) � 4.14E+00 (1.21E-02)
Puma32H 1.74E-02 (1.82E-06) � 2.73E-02 (4.56E-07)
FriedD 2.410 2.171
WaveformD 0.555 0.548
Airline (1M) 20.058 19.688
Average Rank 1.50 1.50
Sig.Diffs (W/L) - 2/5

4.4. Ensembles of AMRules576

We compared the performance of single and ensemble rule sets produced using adap-577
tive model rules. The size of the subset of attributes defined for our experiments was578
63.2% of the total number of attributes. The results in Tables VIII and IX report en-579
sembles of 50 AMRules. For the Airline dataset, only the first million examples of the580
original data set were used to evaluate the performance of Random AMRules. The581
results for the smaller datasets show that the performance of Random AMRules and582
AMRules are similar regarding the average rank for the ordered rule sets. Regarding583
the unordered rule sets, the ensemble methods performed a little better than the base584

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 3, Article 30, Publication date: January 2016.

TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

Adaptive Model Rules From High-Speed Data Streams 30:19

Table IX. Comparison between AMRulesu and RAMRulesu

RMSE (variance)
Dataset AMRulesu RAMRulesu

2dplanes 1.76E+00 (2.66E-02) � 1.41E+00 (6.66E-04)
Ailerons 7.79E-04 (2.26E-06) 4.36E-04 (9.91E-08)
Bank8FM 3.67E-02 (4.76E-05) 3.90E-02 (8.89E-07)
CalHousing 7.82E+04 (5.21E+08) 7.53E+04 (3.15E+08)
Elevators 5.20E-03 (2.11E-05) 4.60E-03 (1.63E-05)
Fried 2.43E+00 (3.79E-03) � 2.16E+00 (2.34E-04)
House8L 4.17E+04 (2.17E+07) 3.82E+04 (3.07E+06)
House16H 4.53E+04 (7.91E+06) 4.45E+04 (1.02E+07)
Kin8nm 2.00E-01 (2.71E-05) � 1.97E-01 (2.29E-05)
MV 1.73E+00 (2.15E-01) � 3.51E+00 (5.25E-03)
Pol 1.94E+01 (9.69E+00) � 2.64E+01 (8.24E-01)
Puma8NH 4.02E+00 (4.30E-02) 4.16E+00 (1.46E-02)
Puma32H 2.02E-02 (7.73E-06) � 2.74E-02 (4.89E-07)
FriedD 2.468 2.324
WaveformD 0.586 0.550
Airline (1M) 19.666 19.706
Average Rank 1.63 1.37
Sig.Diffs (W/L) - 3/3

Table X. Number of Rules for the Variants of AMRules and RAMRules

Number of rules
Dataset AMRuleso AMRulesu AMRules¬PH AMRules¬Anom. AMRulesTM RAMRuleso RAMRulesu

2dplanes 20.8 49.5 20.8 20.8 19.4 855.2 954.9
Ailerons 2.9 2.8 3.3 2.9 2.6 101.7 102.3
Bank8FM 5.2 6.3 5.2 5.2 5.2 168.5 172.2
CalHousing 8.4 10.2 8.6 8.1 6.8 871.8 890.8
Elevators 2.8 2.8 2.8 2.8 2.3 169.1 169.1
Fried 8.5 11.9 8.5 8.5 7.9 545.5 619.2
House8L 3.4 4.2 3.4 3.4 3.4 187.4 196.3
House16H 3.0 3.0 3.0 3.0 3.0 227.7 227.3
Kin8nm 3.0 3.0 3.0 3.0 3.0 162.4 161.0
MV 11.7 14.9 12.9 11.7 12.7 391.3 471.9
Pol 4.7 5.3 4.7 4.7 4.7 203.2 178.6
Puma8NH 4.6 6.0 4.6 4.6 4.6 212.1 231.6
Puma32H 8.7 9.3 8.7 8.7 8.7 137.7 137.4
FriedD 25 34 29 25 25 2169 2972
WaveformD 13 14 15 13 11 1883 1985
Airline (1M) 37 58 49 38 41 5901 6252

learners individually. For the time-evolving data streams, Random AMRules outper- 585
formed AMRules in all datasets excepting Airlines using unordered rule sets. 586

4.5. Model Complexity in Terms of Number of Rules 587

Table X presents the model complexity of the variants of AMRules and RAMRules. By 588
comparing the number of rules of the ordered and unordered rule sets, it can be seen 589
that the number of rules of unordered rule sets tend to be higher than the number of 590
rules of ordered ones, especially in the larger datasets. The AMRules version without 591
change detection usually has more rules than the one equipped with change detection, 592
which is expected since when change is detected the rule is eliminated from the rule set. 593
The complexity of AMRules using the adaptive model and the target mean approaches 594
is similar. Only the Ailerons and Elevators datasets have significant differences (in 595
proportion) in the number of rules. The number of rules of the ensemble methods 596

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 3, Article 30, Publication date: January 2016.

TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

30:20 J. Duarte et al.

Table XI. Relative Learning Times of the Experiments Reported

Relative Learning Times
Dataset AMRuleso AMRulesu FIMTDD IBLStreams Perceptron M5Rules MLP OLS RAMRuleso RAMRulesu

2dplanes 1 1.355 0.602 16.82 0.351 67.25 10.42 0.165 16.1 16.8
Ailerons 1 0.996 0.524 3.85 0.379 5.21 37.53 0.253 17.6 17.4
Bank8FM 1 1.031 0.598 7.13 0.412 29.49 2.29 0.128 11.6 12.4
CalHousing 1 1.071 0.638 2.51 0.388 147.91 4.74 0.138 24.4 24.0
Elevators 1 1.054 0.620 4.43 0.433 12.16 13.36 0.175 21.9 22.4
Fried 1 1.182 0.737 17.73 0.382 1097.27 11.19 0.187 16.5 16.7
House8L 1 1.106 0.721 2.50 0.431 54.01 5.71 0.169 27.8 27.6
House16H 1 1.036 0.698 3.07 0.415 49.33 13.79 0.166 19.1 19.8
Kin8nm 1 1.016 0.697 13.16 0.484 47.53 2.64 0.144 13.1 13.9
MV 1 1.122 0.667 16.57 0.361 57.62 12.90 0.178 15.1 18.6
Pol 1 1.049 0.572 10.74 0.416 11.11 63.79 0.178 21.6 18.3
Puma8NH 1 1.035 0.642 10.76 0.437 31.77 2.32 0.145 12.4 13.4
Puma32H 1 1.033 0.544 6.68 0.351 38.36 15.48 0.171 14.0 14.6
FriedD 1 1.17 2.39 79.31 0.14 - - - 65.70 84.20
WaveformD 1 1.24 14.97 106.14 0.20 - - - 76.60 106.24
Airline (1M) 1 1.15 0.29 8.72 0.07 - - - 98.44 131.92

is clearly higher than the number of rules of AMRules, both using the ordered and597
unordered sets. This is expected as each ensemble is composed of 50 base learners.598

4.6. Learning Times599

Table XI reports the relative learning times required for the tenfold cross-validation600
and prequential evaluation. As AMRuleso generates fewer rules than AMRulesu, it601
is slightly faster. FIMTDD is usually faster than AMRuleso. However, for the FriedD602
and WaveformD datasets, AMRuleso performed considerably faster. Being one-pass603
algorithms, both versions of AMRules are much faster than M5 Rules and MLP. The604
faster algorithms were the simpler ones, OLS and Perceptron, and the slower ones605
were the ensembles methods and IBLStreams. Surprisingly, Random AMRules had606
inferior learning times than IBLStreams in some smaller datasets, despite consisting607
of ensembles with 50 base learners.608

The throughput of AMRules depends on the characteristics of the data stream,609
mainly on the number of attributes, and the number of rules. In this set of experi-610
ences, AMRules processes, on average, around 5k examples per second. Airline is the611
largest dataset, in terms of the number of examples. AMRules processes more than612
8K examples per second in this dataset. Pol is the dataset with largest number of613
attributes and its throughput is around 3K examples per second. Note that the al-614
gorithm was implemented using MOA framework that is designed to run algorithms615
in a single machine, and the experiments were run in a desktop personal computer616
(Intel Core i7-4770 CPU, 16-GB RAM). Since AMRules is highly parallelizable (each617
rule can be learned individually), it could be easily scaled up into multiple machines618
using a distributed streaming processing engine.619

5. CONCLUSIONS620

Regression rules are expressive representations of generalizations from examples.621
Learning regression rules from data streams is an interesting research line that has622
not been widely explored by the stream mining community. To the best of our knowl-623
edge, in the literature there is no method that addresses this issue. In this article,624
we present a new regression model rules algorithm for streaming and evolving data.625
The AMRules algorithm is a one-pass algorithm, able to adapt the current rule set to626
changes in the process generating examples. It is able to induce ordered and unordered627
rule sets, where the consequent of a rule contains a linear model trained with the628
perceptron rule.629

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 3, Article 30, Publication date: January 2016.

TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

Adaptive Model Rules From High-Speed Data Streams 30:21

The experimental results indicate that, in comparison to unordered rule sets, ordered 630
rule sets are more competitive in terms of performance (MAE and RMSE). AMRules is 631
competitive against batch learners even for medium-sized datasets. 632

A new ensemble method inspired by Random Forests was also introduced and eval- 633
uated. Experimental results shown it reduces both MAE and RMSE in time-evolving 634
data streams. 635

REFERENCES 636

Ezilda Almeida, Carlos Abreu Ferreira, and João Gama. 2013a. Adaptive model rules from data streams. In 637
Machine Learning and Knowledge Discovery in Databases (Lecture Notes in Computer Science), Hendrik 638
Blockeel, Kristian Kersting, Siegfried Nijssen, and Filip Zelezný (Eds.), Vol. 8188. Springer, 480–492. 639
DOI:http://dx.doi.org/10.1007/978-3-642-40988-2_31 640

Ezilda Almeida, Petr Kosina, and João Gama. 2013b. Random rules from data streams. In Proceedings 641
of the 28th Annual ACM Symposium on Applied Computing, SAC’13, Coimbra, Portugal, March 18- 642
22, 2013, Sung Y. Shin and José Carlos Maldonado (Eds.). ACM, 813–814. DOI:http://dx.doi.org/10. 643
1145/2480362.2480518 644

K. Bache and M. Lichman. 2013. UCI Machine Learning Repository. Retrieved from http://archive.ics. 645
uci.edu/ml. 646

B. B. Bhattacharyya. 1987. One sided Chebyshev inequality when the first four moments are known. Com- 647
mun. Statist.—Theory Methods 16, 9 (1987), 2789–2791. 648

Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. 2010. MOA: Massive online analysis. 649
J. Mach. Learn. Res. 11 (2010), 1601–1604. Q2650

Leo Breiman. 1996. Bagging predictors. Mach. Learn. 24, 2 (1996), 123–140. DOI:http://dx.doi.org/10.1007/ 651
BF00058655 652

Leo Breiman. 2001. Random forests. Mach. Learn. 45, 1 (2001), 5–32. 653
L. Breiman, J. Friedman, R. Olshen, and C. Stone. 1984. Classification and Regression Trees. Wadsworth 654

and Brooks, Monterey, CA. 238 pages. 655
Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A survey. ACM Comput. 656

Surv. 41, 3 (July 2009), Article 15, 58 pages. DOI:http://dx.doi.org/10.1145/1541880.1541882 657
Pedro Domingos and Geoff Hulten. 2000. Mining high-speed data streams. In Proceedings of the ACM 6th 658

International Conference on Knowledge Discovery and Data Mining, Ismail Parsa, Raghu Ramakrishnan, 659
and Sal Stolfo (Eds.). ACM Press, Boston, MA, USA, 71–80. 660

Francisco J. Ferrer-Troyano, Jesús S Aguilar-Ruiz, and José Cristóbal Riquelme Santos. 2005. Incremental 661
rule learning and border examples selection from numerical data streams. J. Universal Comput. Sci. 11, 662
8 (2005), 1426–1439. 663

Eibe Frank, Yong Wang, Stuart Inglis, Geoffrey Holmes, and Ian H. Witten. 1998. Using model trees for 664
classification. Mach. Learn. 32, 1 (1998), 63–76. 665

Johannes Fürnkranz, Dragan Gamberger, and Nada Lavra. 2012. Foundations of Rule Learning. Springer. 666
João Gama. 2010. Knowledge Discovery from Data Streams. CRC Press. 667
João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues. 2013. On evaluating stream learning algorithms. 668

Mach. Learn. 90, 3 (2013), 317–346. 669
Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Witten. 2009. 670

The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11, (2009), 10–18. 671
V. J. Hodge and J. Austin. 2004. A survey of outlier detection methodologies. Artificial Intelligence Rev. 22, 2 672

(2004), 85–126. 673
Wassily Hoeffding. 1963. Probability inequalities for sums of bounded random variables. J. Am. Statist. 674

Assoc. 58, 301 (1963), 13–30. 675
Elena Ikonomovska, João Gama, and Saso Dzeroski. 2011. Learning model trees from evolving data streams. 676

Data Min. Knowl. Discov. 23, 1 (2011), 128–168. 677
Ron Kohavi. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. In 678

Proceedings of the 14th International Joint Conference on Artificial Intelligence—Volume 2 (IJCAI’95). 679
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1137–1143. 680

P. Kosina and J. Gama. 2012. Very fast decision rules for multi-class problems. In Proceedings of the 2012 681
ACM Symposium on Applied Computing. ACM, New York, NY, USA, 795–800. 682

A. Liaw and M. Wiener. 2002. Classification and regression by random forest. R News 2, 3 (2002), 18–22. 683

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 3, Article 30, Publication date: January 2016.

http://dx.doi.org/10.1007/978-3-642-40988-2_31
http://dx.doi.org/10.1145/2480362.2480518
http://dx.doi.org/10.1145/2480362.2480518
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1145/1541880.1541882

TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

30:22 J. Duarte et al.

H. Mouss, D. Mouss, N. Mouss, and L. Sefouhi. 2004. Test of page-Hinkley, an approach for fault detection in684
an agro-alimentary production system. In Proceedings of the Asian Control Conference, Vol. 2. 815–818.Q3685

ElMoustapha Ould-Ahmed-Vall, James Woodlee, Charles Yount, Kshitij A. Doshi, and Seth Abraham. 2007.686
Using model trees for computer architecture performance analysis of software applications. In Proceed-687
ings of the IEEE International Symposium on Performance Analysis of Systems & Software ISPASS688
2007. IEEE, 116–125.689

E. S. Page. 1954. Continuous inspection schemes. Biometrika 41, 1/2 (1954), 100–115.690
Duncan Potts and Claude Sammut. 2005. Incremental learning of linear model trees. Mach. Learn. 61, 1–3691

(2005), 5–48.692
J. R. Quinlan. 1992. Learning with continuous classes. In Proceedings of the Australian Joint Conference for693

Artificial Intelligence. World Scientific, 343–348.694
J. Ross Quinlan. 1993a. Combining instance-based and model-based learning. In Proceedings of the 10th695

International Conference on Machine Learning, University of Massachusetts, Amherst, MA, USA, June696
27–29, 1993. Morgan Kaufmann, 236–243.697

R. Quinlan. 1993b. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, Inc., San Mateo,698
CA.699

Ammar Shaker and Eyke Hüllermeier. 2012. IBLStreams: A system for instance-based classification and700
regression on data streams. Evol. Syst. 3, (2012), 235–249.701

Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. 2003. Mining concept-drifting data streams using en-702
semble classifiers. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery703
and Data Mining. ACM Press, Washington, D.C., 226–235. DOI:http://dx.doi.org/10.1145/956750.956778704

Sholom M. Weiss and Nitin Indurkhya. 1995. Rule-based machine learning methods for functional prediction.705
J. Artificial Intelligence Res. 3 (1995), 383–403.706

C. J. Willmott and K. Matsuura. 2005. Advantages of the mean absolute error (MAE) over the mean square707
error (RMSE) in assessing average model performance. Climate Res. 30 (2005), 79–82.708

Received October 2014; revised February 2015; accepted September 2015

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 3, Article 30, Publication date: January 2016.

http://dx.doi.org/10.1145/956750.956778

TKDD1003-30 ACM-TRANSACTION January 12, 2016 10:39

QUERIES

Q1: AU: Please supply the CCS Concepts 2012 codes per the ACM style indicated on the ACM website.
Please include the CCS Concepts XML coding as well.

Q2: AU: Please provide the issue number in references “Bifet et al. 2010,” “Hall et al. 2009,” “Shaker and
Hüllermeier 2012,” “Weiss and Indurkhya 1995,” and “Willmott and Matsuura 2005.”

Q3: AU: Please provide the detail of the publisher in reference “Mouss et al. 2004.”

