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Abstract Data stream mining is an emergent research area that aims to
extract knowledge from large amounts of continuously generated data. Novelty
detection is a classification task that assesses if one or a set of examples differ
significantly from the previously seen examples. This is an important task
for data stream, because new concepts may appear, disappear or evolve over
time. Most of the works found in the novelty detection literature presents it
as a binary classification task. In several data stream real problems, novelty
detection must be treated as a multiclass task, in which, the known concept is
composed by one or more classes and different new classes may appear. This
work proposes MINAS, an algorithm for novelty detection in data streams.
MINAS deals with novelty detection as a multiclass task. In the initial training
phase, MINAS builds a decision model based on a labeled data set. In the
online phase, new examples are classified using this model, or marked with
an unknown profile. Groups of unknown examples can be later used to create
valid novelty patterns, which are added to the current model. The decision
model is updated as new data come over the stream in order to reflect changes
in the known classes and allow the addition of novelty patterns. This work
also presents a set of experiments carried out comparing MINAS and the
main novelty detection algorithms found in the literature, using artificial and
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real data sets. The experimental results show the potential of the proposed
algorithm.

Keywords novelty detection · data streams · multiclass classification ·
machine learning · concept evolution · unsupervised decision model update

1 Introduction

Data stream mining is concerned with the extraction of knowledge from large
amounts of continuously generated data in a non-stationary environment. Nov-
elty detection (ND), the ability to identify new or unknown situations not
experienced before, is an important task for learning systems, especially when
data are acquired incrementally (Perner, 2008). In data streams (DSs), where
new concept can appear, disappear or evolve over time, this is an important
issue to be addressed. ND in DSs makes it possible to recognize the novel
concepts, which may indicate the appearance of a new concept, a change in
known concepts or the presence of noise (Gama, 2010).

Algorithms for ND in DSs usually have two phases, initial training phase
and novelty detection phase (also named online phase). The first phase is
offline and aims to learn a decision model based on labeled examples. The
novelty detection phase is concerned with the model application and training
with the new unlabeled examples.

Several works consider ND in DSs as a one-class classification task, in which
the initial training phase learns a model based on examples from one class
(the normal class). In the novelty detection phase, examples not explained by
the current decision model are classified as novelty. In contrast, several works
(Spinosa et al, 2009; Hayat and Hashemi, 2010; Al-Khateeb et al, 2012a), in-
stead of identifying a novelty by the presence of only one example not explained
by the model, consider clusters of examples not explained by the current model
(also named as unknown examples) to build novelty patterns (NP).

However, ND in DSs can be viewed as a task more general than a one-class
classification task. In ND problems, the known concept about the problem (or
normal concept) may be composed by different classes, and novel classes may
appear in the course of time, resulting in a phenomenon known as concept
evolution. Thus, the decision model cannot be static, but it should rather
evolve to represent the new emergent classes. Therefore, we understand that
ND is a multi-class classification task.

Some works consider that the normal concept can be composed by a set
of different classes (Masud et al, 2011; Farid and Rahman, 2012; Al-Khateeb
et al, 2012a; Liu et al, 2013). However, they consider that only one new NP
appears at time, i.e., examples from two or more different classes cannot appear
interchangeably. In addition, these works evolves the decision model assuming
that the true label for all instance will be available after T l timestamps. This is
an impractical assumption in several scenarios, since to label all the examples
is an expensive and time consuming task.
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In this study, we propose a new algorithm, named MINAS (MultI-class
learNing Algorithm for data Streams), to deal with ND in multiclass DSs.
MINAS has five major contributions:

– The use of only one decision model (composed by different clus-
ters) representing the problem classes, learned in the training
phase, or in the online phase;

– The use of a set of cohesive and unlabeled examples, not explained by the
current model, is used to learn new concepts or extensions of the known
concepts, making the decision model dynamic;

– Detection of different NPs and their learning by a decision model, repre-
senting therefore a multiclass scenario where the number of classes is not
fixed;

– Outliers, isolated examples, are not considered as a NP, because a NP is
composed by a cohesive and representative group of examples;

– The decision model is updated without external feedback, or using a small
set of labeled examples, if it is available.

Here, the MINAS algorithm is compared with other algorithms from the lit-
erature using artificial and real data sets. New versions for some of these
algorithms are also proposed, in order to verify their performance in scenarios
where the class labels are not available.

A preliminary version of the MINAS algorithm was presented in (Faria
et al, 2013a). The proposed approach presented in this paper differs
from the original version in the following aspects:

– The initial training phase can use the CluStream or K-Means algorithms,
producing a set of micro-clusters that are later used to represent the known
concept about the problem;

– In the online phase, each element of the short-term memory, which stores
the examples not explained by the system, has an associated timestamp,
allowing to eliminate outdated examples from this memory;

– A new validation criterion is developed for the identification of groups
of examples representing NPs as well as new heuristics to automatically
calculate the threshold that distinguishes NPs from extensions of the known
concepts;

– A new version of the algorithm MINAS using active learning, named MINAS-
AL, is proposed;

– Additional algorithms from the literature are used in the exper-
iments and variations of these algorithms are implemented and
compared to MINAS;

– A recent and appropriate evaluation methodology from the lit-
erature is used to compare MINAS with other algorithms for
multiclass classification tasks in DSs, presenting a deeper analy-
sis of strong and weakness of these algorithms and a complexity
analysis of MINAS.

The paper is organized as follows. Section 2 formulated the investigated
issue. Section 3 describes the main related algorithms found in the literature.
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Section 4 describes in details how the MINAS algorithm and its variation using
active learning work. Section 5 presents the data sets used in the experiments
and the algorithm settings adopted. This section also describes the experi-
ments carried out and discusses the experimental results. Finally, Section 6
summarizes the conclusions and points out future works.

2 Formalization of the Problem

A DS can be described as an unbounded sequence of continuous generated
examples, mostly in high speed, in which the data distribution can change
over time.

Definition 1 Data Stream: A data stream S is an infinite set of multi-
dimensional examples X1,X2, ...,XN, ..., arriving at timestamps T1,T2, ...,TN , ....
Each example is described by a n−dimensional attribute vector, denoted by
Xi = (x1i ...x

d
i ) (Aggarwal et al, 2003).

The algorithms for ND in DSs work in two phases, namely initial training
phase and novelty detection phase. In the classical view of the ND, the known
concept about the problem is modelled in the training phase using a labeled
data set. Most of the algorithms consider the known concept to be composed
only by the normal class. In the novelty detection phase, new examples are
classified using the decision model or they are rejected (classified as abnormal,
anomaly or novelty).

In a more generalist view, ND can be considered as multiclass classification
task. Some works regarded ND as multiclass task, but they saw the novelty
concept as composed by only one class (Farid and Rahman, 2012; Masud et al,
2010, 2011; Al-Khateeb et al, 2012a,b). MINAS considers ND as a multiclass
classification task, where the known concept can be composed by different
classes and different classes can appear interchangeably over time. In a more
formal way, we define:

Definition 2 Initial Training phase (offline): Represents the training
phase, which produces a decision model from a labeled data set. Each ex-
ample from the training set has a label (yi), where yi ∈ Y tr, with Y tr =
{Cknw1 , Cknw2 , .., CknwL

}, where Cknwi represents the ith known class of the
problem and L is the number of known classes.

Definition 3 Online phase: Represents the classification of new unlabeled
examples in one of the known classes or as unknown profile. As new data
arrive, new novel classes can be detected, expanding the set of class labels
to Y all = {Cknw1 , Cknw2 , .., CknwL

, Cnov1 ..., CnovK}, where Cnovi represents
the ith novel class and K is the number of novel classes, which is previously
unknown. This phase is also concerned with the update of the decision
model and execution of the ND process.
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Definition 4 Novel Class: A class that is not available in the initial training
phase, appearing only in the online phase. In the literature, the appearance of
new classes is also known as concept evolution (Masud et al, 2011).

Definition 5 Unknown profile: An example not explained by the cur-
rent model. If the classification system is not able to classify a new
example, it labels it temporally with the unknown profile. In one-
class classification, if the classification system is not able to classify a
new example, it labels it as abnormal, rejected or anomaly, i.e., the
example does not belong to the normal class. In some contexts, this
is sufficient. In multiclass classification tasks, the unknown examples
can be used in the ND process, in the noise or outliers identification,
and in the decision model update.

A common strategy adopted to classify the examples not ex-
plained by the current decision model is to label them with the
unknown profile temporally. At this time, the adopted strategy is
to wait for the arrival of other similar examples before to decide if
it represents a noise or outlier, a change in the known concepts, or
the appearing of a new concept. When there is a sufficient number
of unknown examples, they are submitted to a ND procedure, pro-
ducing different novelty patterns. In MINAS, the NPs are obtained
by executing a clustering algorithm in the examples marked with
the unknown profile. Each obtained cluster represents a NP. Figure
1 illustrates the procedure used by MINAS to produce NPs from unknown
examples (this procedure is detailed in Section 4).

Definition 6 Novelty Pattern (NP): A pattern identified from groups
of similar examples marked with the unknown profile by the classifi-
cation system. A novelty pattern can indicate the presence of noise
or outlier, a change in the known concepts, named concept drift, or
the appearing of a new concept, named concept evolution.

Definition 7 Concept drift: Every instance xt is generated from a source
following a distributionDt. If for any two examples x1 and x2, with timestamps
t1 and t2, D1 6= D2, then a concept drift occurs (Farid et al, 2013).

In order to address concept drift and concept evolution, the de-
cision model needs to be updated constantly. Distinguish between
the occurrence of new classes from changes in the known classes
is an important issue to be addressed in DS research. In addition,
it also necessary to forget outdated concepts, which is not related
with the recent stream activity. Finally, noise or outlier cannot be
considered as a NP and must be eliminated, since they represent
isolated examples or belong to groups of non-cohesive examples.



6 Elaine Ribeiro de Faria et al.

Examples 
marked with 
the unknonw
profile

Valid micro-
clusters

Novelty
Patterns

NP NP NP1 2 3

Fig. 1: MINAS procedure to obtain NPs from unknown examples

3 Related Work

The works related to ND in DSs found in the literature belong to three main
approaches:

– Works that treat ND as a one-class task(Rusiecki, 2012; Krawczyk and
Woźniak, 2013);

– Works that propose improvements in the one-class classification task (Spinosa
et al, 2009; Hayat and Hashemi, 2010); and

– Works that consider ND as a multiclass task, but assume that more than
one new class cannot appear interchangeably(Masud et al, 2010, 2011; Al-
Khateeb et al, 2012a,b).

The algorithms from the first approach induce, in the initial training phase,
a decision model using only the known concept about the problem, the normal
class (Rusiecki, 2012; Krawczyk and Woźniak, 2013). In their online phase, new
examples are classified as belonging to the normal class or as novelty. Another
important feature of these algorithms is the constant update of their decision
model in order to address concept drift. For such, they assume that the true
label of all examples will be available immediately. The main problems with
these algorithms are:

– Several real applications are multiclass, where the known concept can be
composed by different classes and new classes can appear over time;

– The presence of only one example not explained by the decision model is
not sufficient to detect a NP, since that the data set can contain noise and
outliers;



MINAS: Multiclass Learning Algorithm for Novelty Detection in Data Streams 7

– The true label of all examples cannot be available.

In order to overcome some of these problems, new algorithms were pro-
posed (Spinosa et al, 2009; Hayat and Hashemi, 2010). In these algorithms,
the online phase labels with the unknown profile the examples not explained
by the current decision model and store them in a short-term memory. When
there is a sufficient number of examples in this memory, these examples are
clustered. The obtained validated clusters are evaluated as either an extension
of the normal class or a novelty. Thus, the decision model is updated by the
addition of new clusters obtained from unlabeled data. In these algorithms,
the decision model is composed by three submodels, named normal, exten-
sion and novelty, each one consisting of a cluster set. The normal submodel
represents the known concept about the problem. It is static and created in
the initial training phase phase. The extension submodel represents extensions
of the normal submodel. It is created and updated in the online phase. The
novelty submodel represents the NPs detected over time. The classification of
a new example occurs by finding its closest cluster, among all clusters of the
three submodels. Thus, a new example is classified as normal, extension or
novelty based on the submodel of the closest cluster. The main problem with
these algorithms is to consider ND as a binary classification task, composed
by the normal and novelty classes.

The algorithms from the third category see ND as a multiclass classification
task (Masud et al, 2010, 2011; Al-Khateeb et al, 2012a,b). In the initial training
phase, these algorithms create a decision model using labeled examples from
different classes. In the online phase, each new example is classified using
the current decision model. If the model cannot explain the example, these
algorithms wait for the arrival of new similar examples to identify a NP. The
decision model is composed by an ensemble of classifiers, created and updated
in an offline fashion. The decision model is only updated when a chunk of
examples is labeled. In this case, the classifier with the highest error is replaced
by a new classifier. The error of each classifier is computed using the set of
examples labeled in the last chunk. The main problems with these algorithms
are:

– The decision model is updated assuming that the label of all examples is
available, and;

– Only one novel class appears at time. Thus, if examples from two different
classes appear interchangeably over time, they will be classified only as
novelty, but it will not possible to distinguish them.

4 MINAS

This section describes the main aspect of the proposed algorithm, named MI-
NAS, which stands for MultI-class learNing Algorithm for data Streams.
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4.1 Motivation and Contributions

Although several algorithms for ND in DSs have been proposed, they do not
address, in a single algorithm, all the issues involved in this problem, described
in the Section 2.

The main problem with the previous algorithms is to treat the ND in DSs
issue as a one-class classification task or suppose that all the true labels of the
examples will be available for the continuous update of the decision model. Be-
sides, only few of these algorithms include strategies to treat recurring context
or address noise and outliers.

As we previously argued, many ND in DSs tasks may present more than
one novelty class. Thus, they should be treated as multiclass classification
tasks.

Thus, the motivation to propose the MINAS arises from the need of an
algorithm that addresses ND em DSs as a multiclass classification task, which
supposes that the true label of all examples will not be available and deals with
the presence of recurring contexts. MINAS, as most ND algorithms, presents
the following features:

– Is composed by two phases, named initial training and online;
– Has a decision model composed by a set of clusters;
– Marks the examples not explained by the current model as unknown and

stores them in a short-term memory; and
– Uses clusters of unknown examples to update the decision model.

Additionally, MINAS presents several new contributions:

– The use of a single decision model to represent the known classes, learned
from labeled examples, and the NPs, learned online from unlabeled exam-
ples;

– A ND procedure that identifies and distinguishes different NPs over the
stream;

– A ND procedure that identifies extensions of the known concepts, rather
than only extensions of the normal class, and distinguishes between an
extension and a NP;

– Use of a memory sleep to address recurring contexts;
– Removal of old elements from the short-term memory by associating a

timestamp to each element of this memory;
– Use of a cluster validation based on the silhouette coefficient;
– Automatic calculation of the threshold employed to separate extensions

from NPs;
– Classification of new examples in one of the known classes or in one of the

NPs detected over the stream;
– Has a version based on active learning, for scenarios where it is

possible to obtain the true label of a few set of examples.
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Fig. 2: Overview of the phases: (a) initial training and (b) online

4.2 Phases of Minas

4.2.1 Overview

MINAS algorithm is composed by two phases, named initial training and on-
line. Figure 2 illustrates these two phases. The initial training phase, super-
vised learning phase, induces a decision model based on a labeled data set. It
is executed only once. Each class is modeled by a set of micro-clusters. The
initial decision model is the union of the micro-clusters sets created for each
class.

The main motivation behind creating a classifier composed by a set of
micro-clusters is that it can evolve over the stream in a supervised or unsu-
pervised fashion. Micro-clusters are a statistical summary of the data, which
present the additive and incremental properties. A micro-cluster can be up-
dated by the addition of a new example or by the merge of two micro-clusters.
During the online phase, a new micro-cluster can be created or an outdated
micro-cluster can be eliminated (forgotten). Besides, a micro-cluster can be
created from labeled and unlabeled data sets.

In the online phase, MINAS receives a set of unlabeled examples and classi-
fies these examples using the current decision model. The examples explained
by the decision model can be used to update it. The examples not explained
by the model are marked with the unknown profile. They are stored in a
short-term memory for future analysis. When there is a sufficient number of
examples in this memory, they are clustered, generating a set of new micro-
clusters. MINAS evaluates each one of the new micro-clusters and removes
the non cohesive or representative ones. The valid micro-clusters are evalu-
ated to decide if they represent an extension of a known class or a NP. In
both case, these micro-clusters are added to the decision model and used in
the classification of new examples.

MINAS algorithm also has a mechanism to forget old micro-clusters and
to eliminate outdated elements from the short-term memory.
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4.2.2 Initial training phase

The initial training phase (offline phase), shown in Figure 2 (a), receives as
input a labeled data set containing examples from different classes. Algorithm
1 details this phase. The training data set is divided into subsets, where each
subset Si represents one class of the problem. A clustering algorithm is run on
each subset, creating k micro-clusters for each known class. Each micro-cluster
is composed by four components: N , number of examples, LS linear sum of the
examples, SS squared sum of the elements and T , timestamp of the arrival
of the last example classified in this micro-cluster. Using these measures is
possible to calculate the centroid and radio of a micro-cluster (Zhang et al,
1996).

The clustering algorithms used in this work to create the micro-clusters
are k-Means (MacQueen, 1967; Lloyd, 1982) and CluStream (Aggarwal et al,
2003). Although the k-means algorithm has a low computational cost, it may
not be suitable for large data sets. On the other hand, CluStream is an incre-
mental algorithm developed to work with DSs and has a low computational
cost. Thus, it is more adequate for large data sets. The online phase of the
CluStream algorithm (described in (Aggarwal et al, 2003)) is executed on the
MINAS training set.

After the execution of the clustering algorithm, each micro-cluster is repre-
sented by four components (N , LS, SS and T ). Each micro-cluster is labeled
to indicate to which class it belongs. Thus, the decision boundary of each class
is defined by the union of its k micro-cluster. The initial decision model is
composed by the union of the k micro-clusters obtained for each class.

Using the summary statistic of the micro-cluster, measures like centroid
and radius can be computed. MINAS uses these measures to classify new
examples. For such, it computes the distance between a new example and
the closest centroid. If this distance is less than the micro-cluster radius, the
example is classified using this micro-cluster. MINAS calculates the radius of a
micro-cluster as the standard deviation of the distance between the examples
and the centroid, multiplied by a factor f , as proposed in (Aggarwal et al,
2003).

It is also important to highlight that the decision model generated in this
phase can evolve over time, by the insertion of new micro-clusters, removal
of outdated ones or update of existing micro-clusters, which allows to update
the decision model with a low computational cost. Besides, this structure
allows to evolve the decision model using unlabeled examples, i.e.,
without external feedback.

4.2.3 Online phase

The online phase, show in Figure 2 (b), is composed by three operations:
classify new examples, detect NPs and update the decision model. To perform
these operations, MINAS receives as input a stream of unlabeled examples,
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Algorithm 1 MINAS: Algorithm for the initial training phase
Require: k: number of micro-clusters, alg: clustering algorithm, S: Training Set

Model ← ∅
for all (class Ci in S) do

ModelTmp ← Clustering(SClass=Ci
, k, alg)

for all (micro-cluster micro in ModelTmp) do
micro.label ← Ci;

end for
Model ← Model ∪ ModelTmp;

end for
return Model

continuously generated, one example per time period. The algorithm 2 details
this phase.

For each new unlabeled example, MINAS verifies if it can be explained by
the current decision model. For such, it calculates, using the Euclidean dis-
tance, the distance Dist between the new example and the centroid of the clos-
est micro-cluster. If Dist is smaller than the micro-cluster radius, the example
is classified using the micro-cluster label. When the example is classified by
one of the micro-clusters, the timestamp of this micro-cluster is updated with
the timestamp associated to the example. After this operation, the statistic
summary of this micro-cluster is updated. Two approaches were investigated
for this operation:

– Update the micro-cluster summary when a new example is explained by
it,

– Do not update the statistic summary, since this can contribute to increase
the classifier error. A comparison between these two approaches is pre-
sented in Section 5.

When a new example is not explained by any of the micro-clusters of
the decision model, it is marked with the unknown profile and moved to a
short-term-memory, for future analysis. The unknown examples are used to
model new micro-clusters that can represent NPs or extensions of the known
concepts. Marking a new example as unknown means that the current decision
model has not sufficient knowledge to classify it. This last case may be due to
one of the three following situations:

– The example is a noise or outlier and need to be removed;
– The example represents a concept drift; or
– The example represents a NP, which was not learned before.

In the two last situations, it is necessary to have a cohesive and representa-
tive set of unknown examples to update the decision model in an unsupervised
fashion.

Besides, each time a data window is processed, the decision model must
forget outdated micro-clusters, i.e., those that do not represent the current
state of the DSs. For such, the micro-clusters that did not receive examples
in the last time window are moved to a sleep memory. A time window
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represents the most recent data in the stream and it is updated in a
sliding window model. The window size is a user-defined parameter,
named windowsize.

This process is detailed in Section 4.3.1. Moreover, the outdated examples
from the short-term memory also must be removed, as described in Section
4.3.2.

An important characteristic of MINAS is the use of a unified decision
model, composed by different classes learned in the initial training phase, and
NPs and extensions learned online. Thus, to classify a new example is to assign
it the label of a known classes or the label associated with an extension or NP.

Algorithm 2 MINAS: Algorithm for the online phase
Require: Model: decision model created in the initial training phase, DS: data stream,

T : threshold, NumExamples: minimal number of examples to execute a ND procedure,
windowsize: size of a data window, alg: clustering algorithm.
ShortMem ← ∅
SleepMem ← ∅
for all (example ex in DS) do

(Dist,micro) ← closer-micro(ex,Model)
if (Dist ≤ radius(micro) then

ex.class ← micro.label
update-micro(micro,ex)

else
ex.class ← unknown
ShortMem ← ShortMem ∪ ex
if (|ShortMem| ≥ NumExamples) then

Model ← novelty-detection(Model,ShortMem, SleepMem, T , alg)
end if

end if
CurrentT ime ← ex.time
if (CurrentT ime mod windowSize == 0) then

Model ← move-sleepMem(Model,SleepMem,CurrentT ime, windowSize)
ShortMem ← remove-oldExamples(ShortMem, windowsize)

end if
end for

(A) Extension and novelty pattern detection
Whenever a new example is marked with the unknown profile, MINAS
verifies if there is a minimal number of examples in the short-term-
memory. If so, MINAS executes a ND procedure in an unsupervised fash-
ion, as illustrated in Figure 3. The algorithm 3 details this process. The
first step is the application of a clustering algorithm on the examples in
the short-term-memory, producing k new micro-clusters. The K-Means
or Clustream algorithms can be used in this step. MINAS evaluates each
one of the micro-clusters to decide if it is valid, i.e., it is cohesive and
representative.
A new micro-cluster is cohesive if its silhouette coefficient is larger than
0 (see Equation 1). For such, MINAS uses a simplified silhouette coeffi-
cient (Vendramin et al, 2010). In Equation 1, b represents the Euclidean
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distance between the centroid of the new micro-cluster and the centroid
of its closest micro-cluster, and a represents the standard deviation of the
distances between the examples of the new micro-cluster and the centroid
of the new micro-cluster.

Silhueta =
b− a

max(b, a)
(1)

A new micro-cluster is representative if it contains a minimal number of
examples, where this number is a user-defined parameter.
If a new micro-cluster is valid, the next step is to set its label and to
add this micro-cluster to the current decision model. In order to decide
if it represents an extension of a known concept or a novelty pattern,
MINAS calculates the distance between the centroid of the new micro-
cluster m and the centroid of its closest micro-cluster mp. If this distance
is smaller than the threshold T , the new micro-cluster is an extension,
and it is labeled with the same label of the micro-cluster mp.
Otherwise, the micro-cluster is a NP, and a new sequential label (NP1,
NP2, ...) is associated with it. In both cases, MINAS updates the decision
model adding this new micro-cluster. A discussion about the choice of the
threshold T value is presented in the next section.
When a micro-cluster is considered invalid, the short-term memory is not
modified, i.e., its examples are maintained for future analysis. However, if
these examples stay for a long time in this memory, they can negatively
contribute to the decision model update, since they either do not represent
the current characteristics of the DS or they represent noises or outliers.
Thus, the old examples from the short-term-memory need to be removed.
This removal process is discussed in Section 4.3.2.
An important characteristic of MINAS is its ability to distinguish among
different NPs learned over time. This is possible because MINAS assign to
the same NP similar micro-clusters, but creates new NPs whenever a new
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detected micro-cluster is distant from the known micro-clusters. In addi-
tion, a domain specialist, if available, can label these new micro-clusters
providing a fast and incremental decision model update.

Algorithm 3 MINAS: Algorithm for detection of NPs or extensions
Require: Model: current decision model, ShortMem: short-term memory, SleepMem:

sleep memory, T : threshold, alg: clustering algorithm
ModelTmp ← Clustering(ShortMem, k, alg)
for all (micro-grupo micro in ModelTemp) do

if ValidationCriterion(micro) then
(Dist, microM) ← closest-micro(micro,Model)
if Dist ≤ T then

micro.label ← microM.label
else

(Dist, microS) ← closest-micro(micro,SleepMem)
if Dist ≤ T then

micro.label ← microS.label
else

micro.label ← new label
end if

end if
Model ← Model ∪ micro

end if
end for
return Model

(B) Selection of the Threshold Value to Separate Novelty Patterns
from Extensions

This work proposes different strategies to select the best threshold value T
to distinguish a NP from an extension. The first strategy uses an absolute
value, pre-defined by the user. However, the best threshold value varies
according to the data set. Besides, in most of the data sets, a single value
is not able to separate NPs from extensions. In general, small T values
produce many NPs and few extensions. In contrast, large values for T
produce many extensions and few novelties. Thus, this strategy works
only for artificial data, especially in very well separated spaces.
In order to automatically select the best threshold value, this
work proposes three different strategies, named TV 1, TV 2, and
TV 3. All strategies first find the Euclidean distance Dist between
the centroid of a new micro-cluster m and its closer micro-cluster
mp. If Dist ≤ T , then the new micro-cluster is an extension. Oth-
erwise is a NP. In TV 1, T is defined as a cohesiveness measure,
computed as the standard deviation of the Euclidean distances
between the examples of mp and its centroid, multiplied by a
factor f . In TV 2, T is computed as the maximum Euclidean dis-
tance between the centroid of mp and the centroid of the micro-
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clusters that also belong to the same class that mp. In TV 3,
instead the maximum distance, T is computed as the mean dis-
tance. In TV 2 and TV 3, if mp is the only micro-cluster of its class,
T is computed as in TV 1. The factor f used in TV 1 was defined
empirically to the value 1.1, by executing a set of experiments
using different data sets.

4.3 Extensions of the base model

4.3.1 Forgetting Mechanism and Detection of Recurring Contexts

During the online phase, the decision model can be updated in two moments.
First, when classifying a new example using a micro-cluster, the model can
have its statistic summary updated. Second, when a new valid micro-cluster
from unknown examples is produced, it can be categorized as either an exten-
sion or a NP, which is added to the decision model.

The decision model can also be updated by using a forgetting mechanism.
When this mechanism is used, micro-clusters that stop contributing to the ND
are removed. For such, MINAS stores, for each micro-cluster, a component rep-
resenting the timestamp of the last example classified. The micro-clusters
that do not receive new examples in the last time window are moved
to a sleep memory (see the last if command in Algorithm 2). The
size of a window is defined by a user parameter, named windowsize.

When MINAS detects a new valid micro-cluster, it consults the current
decision model to find the closest existing micro-cluster, whose distance is less
than T . However, if none is found, MINAS executes the same procedure in
the sleep memory. If a micro-cluster in the sleep memory is found, then the
new micro-cluster is marked as an extension and a recurrence of a concept
is identified. Next, the micro-cluster of the sleep memory is awakened, i.e.,
removed from the sleep memory and added to the current decision model.
Otherwise, the new micro-cluster is identified as NP.

The old micro-clusters remain forever in the sleep memory, if
they are not awakened. The user can define a maximum limit to
this memory and thus, when it is full, the oldest micro-cluster is
removed. However, the higher this memory, the higher will the com-
putational time of the novelty detection procedure, since it needs
to scan this memory. In this work our main objective is to propose
a new algorithm that can obtain comparable performance to the
state-of-art using few or no labeled examples. In fact, to define a
limit to the main and sleep memories is an important issue to be
addressed by DS algorithms. But, all of the algorithms suffer of the
same problem, and thus this issue was not deep study in this work.
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4.3.2 Treatment of Noise Data and Outliers

An important aspect to be addressed by ND systems is the treatment of noise
data and outliers, which can be confused with the appearing of new concepts.

When a new micro-cluster is obtained by the ND procedure, MINAS applies
a validation criterion to eliminate the non-cohesive or representative micro-
clusters. When an invalid micro-cluster is obtained, it is discarded, but its
examples stay in the short-term memory for future analysis. However, if an
example stays in the short-term memory for a long period, it is removed. The
reason is that this example had already participated in at least one clustering
procedure and its corresponding micro-cluster was considered invalid. Thus it
is a candidate to be a noise or outlier. Another motivation for its removal is
the possible long period it has been in the short-term memory, therefore not
contributing for the current features of the DS.

To remove old examples from the short-term memory, each time a new
example is added to this memory, its timestamp is also stored. MINAS fre-
quently verifies the short-term memory to decide the removal of
outdated examples. This frequency is determined by a user-defined
parameter named as windowsize, i.e., at the end of each data window
MINAS verifies if there is outdated examples to be removed. MINAS
considers as outdated, an example whose difference between its timestamp and
the current timestamp is higher than the data window size.

4.3.3 MINAS with Active Learning

MINAS assumes that the true label of the examples is not available, thus
updating the decision model without external feedback. However, in several
problems, the label of a reduced set of examples may be available after a delay,
especially if a specialist is available to manually label some of the examples.

In order to benefit from these labeled examples, we propose a new version
of MINAS, named MINAS-AL (MINAS Active Learning). The MINAS-AL al-
gorithm uses active learning techniques to select a representative set of labeled
examples to update the decision model.

The initial training and online phases of MINAS-AL and MINAS are very
similar. They only differ in the decision model update. MINAS-AL, after read
Tr examples, chooses the centroids of the micro-clusters detected in this in-
terval as the examples to be labeled by the specialist. After the label of a
micro-cluster is obtained, the decision model is updated with the new label.
If there is no sufficient information to label the micro-clusters, or there is no
specialist available, the micro-clusters keep their previous label, represented
by the sequential number.
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5 Experiments

This section describes the experiments carried out for this study and ana-
lyzes the experimental result. In these experiments, MINAS was compared
with state-of-the art ND algorithms found in the literature. Modifications were
made in these algorithms to allow a comparison with similar conditions.

5.1 Experimental Settings

The experiments use artificial and real data sets. The main features of these
data sets are summarized by Table 1. MOA1, created using the MOA frame-
work (Bifet et al, 2010), and SynEDC2 are artificial data sets. KDD Cup 99
Network Intrusion Detection (KDD) (Frank and Asuncion, 2010) and Forest
Cover Type (FCT) (Frank and Asuncion, 2010) are real data sets frequently
used in ND experiments. KDD-V2 is similar to KDD, but the training set
contains only examples from the normal class. This data set can be used
by algorithms that consider ND as a one-class task, such as the
algorithm OLINDDA, proposed in (Spinosa et al, 2009).

Table 1: Data sets used in the experiments

Data set #Attributes #Examples #Classes Training classes
MOA 4 100,000 4 0 and 1
SynEDC 40 400,000 20 0, 1, 2, 3, 7, 8 and 9
KDD 34 494,021 5 normal and dos
KDD-V2 34 494,021 5 normal
FCT 54 581,012 7 spruce/fir and lodgepole pine

In the experiments performed, for each data set, 10% of the data are used
in the training phase, with only the examples from the selected classes (see
Table 1). The remaining examples are used in the test phase. The order of the
examples is the same as in the original data set.

The following algorithms are used in the experiments: OLINDDA3(Spinosa
et al, 2009), ECSMiner4(Masud et al, 2011), CLAM5(Al-Khateeb et al, 2012a)
and MINAS6.

Table 2 presents the main parameters of each algorithm from the literature
compared with MINAS in this study, and the values adopted. Table 3 presents
the main parameters of the MINAS algorithm, and the value settings used

1 for details see (Faria et al, 2013a)
2 Available on http://dml.utdallas.edu/Mehedy/index files/Page675.html
3 We would like to thank to Eduardo Spinosa for providing the source codes.
4 The executable codes are available in http://dml.utdallas.edu/Mehedy/index

files/Page675.html
5 We would like to thank the authors for providing the executable codes.
6 The source code is available in http://www.facom.ufu.br/∼elaine/MINAS
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Table 2: Algorithms from the literature used in the experiments

Algorithms Parameters Settings

ECSMiner

Window Size 2,000
Number of Window Sizes in Initial
Training Phase

10% of the data / 2,000

Tc maximum timestamp to label
an example

400

Tl maximum timestamp to obtain
the true label

1,000

Number of classifiers in the ensem-
ble

6

Number of examples to execute the
ND procedure

50

q: used in the ND procedure 50
Number of clusters by data window 50

Classifier parameters
KNN: K = 50
Decision Tree: default values from
Weka

CLAM Idem to ECSMiner Idem to ECSMiner

OLINDDA

Size of the training set 10% of the data set
Size of the short-term-memory 200
Minimum number of examples in
the cluster

3

Validation criterion Mean distance between examples
and centroid

Cluster parameters (K-Means) K = 50

Table 3: Different configurations of MINAS

Parameters Setting 1 Setting 2 Setting 3 Setting 4
Number of examples to
execute a ND procedure
(#ExND)

2,000 #ExClu ∗ K 2,000 50

Minimum number of exam-
ples in the cluster (#ExClu)

#ExMem/K 3 #ExMem/K 30

Window size to forget out-
dated data

2*#ExND 1,000-10,000 2*#ExND 2*#ExND

Threshold
TV 1 or

TV 1 TV 1 TV 1TV 2 or
TV 3

Clustering algorithm
Clustream

CluStream
Clustream Clustream

+ KMeans
K=100 K=100 K=100 K=50

Update Micro-cluster No No Yes No

#ExMem is the current number of examples in the short-term memory

in the experiments. The MINAS versions configured with Setting 1, Setting
2, and Setting 3 are named here, MINAS-S1, MINAS-S2, and MINAS-S3,
respectively.

We have experimentally tested different values to K and we de-
tected the values between 50 and 200 result in a good performance
for the MINAS algorithm. When using Clustream and K-Means,
we executed the OMRk method in order to select the best number
of clusters for the K-Means algorithm. The initial conclusions are
that the larger the number of micro-clusters, the larger the time
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complexity of the algorithm, however larger values of K (> 200)
do not improve the classifier performance significantly and K=100
presented the best results.

MINAS-AL uses the same parameters as MINAS and it is configured using
Setting 1 with TV 1. In the experiments, we simulated the action of a specialist
by considering the label associated with the majority of the examples of a
micro-cluster as its label. This is possible because the true label is available
for all data sets used in the experiments.

5.2 Evaluation Measures and Methodologies

In order to evaluate the ND algorithms for DSs, the following issues
need to be considered:

– Unsupervised learning, which generates NPs without any asso-
ciation with the problem classes, and where one class may be
composed of more than one NP;

– A confusion matrix that increases over time;
– A confusion matrix with a column representing the unknown

examples, i.e., those not explained by the current model;
– The variation of the evaluation measures over time;
– The problem of classification error rate reduction as the number

of NPs increases, i. e., the larger the number of NPs detected,
the lower the classifier error.

In order to address all these issues, the evaluation methodol-
ogy used in this work is the same proposed in Faria et al (2013b).
According to this methodology, the first step is to build a square
confusion matrix by associating each NP, detected by the algorithm,
to a problem class using a bipartite graph. The number of NPs is not
equal to problem classes and there is not a direct matching between
them.

In order to associate NPs to problem classes, a bipartite graph
with vertices X and Y is used, where X represents the NPs detected
by the algorithm and Y the problem classes. For each NP NPi the
edge with the highest weight wij is chosen, where weight represent
the number of examples from the class Cj classified in the NPi.

Following the same strategy adopted in (Faria et al, 2013b), since
the NPs were associated to the problem classes, the confusion matrix
is evaluated using the Combined Error measure - CER (see Equation
2). The last column of this matrix, which represents the examples
marked with the unknown profile, is evaluated separately using the
UnkR measure (see Equation 3). In Equation 2, ExCi is the number
of examples from the class Ci, M the number of problem classes,
FPRi false positive rate of the class Ci, FNRi false negative rate of
the class Ci, and Ex the total number of examples. All this terms



20 Elaine Ribeiro de Faria et al.

are computed without consider the unknown examples. In Equation
3, Unki is the number of examples from the class Ci classified as
unknonw, and ExCi is the total number of examples from the class
Ci.

CER =
1

2

M∑
i=1

#ExCi

#Ex
(FPRi + FNRi) (2)

UnkR =
1

M

M∑
i=1

#Unki
#ExCi

(3)

In order to verify the classifier behavior over time, the evaluation
methodology proposed in (Faria et al, 2013b) builds a 2D-graphic,
where the axis X represents the data timestamps and axis Y rep-
resents the values for the evaluation measures. On this graphic, it
is important to plot one measure representing the unknown rate
in comparison with one or more measures of the accuracy or error
rate. Additionally, it is important to highlight on this graphic the
detection of a new NP by the algorithm.

When evaluating a classifier, an important issue to be considered,
in addition to the error measure, is the complexity of the model. It is
important to create models with both low error and low complexity.
Considering that the model complexity can be estimated as the
number of detected NPs, one can prefer less complex models with
low error. Thus, the number of NPs detected over the stream is an
important measure to be analysed in the evaluation of a classifier.

5.3 New versions of the algorithms from the literature

To allow a comparison of the ND algorithms from the literature with MINAS
in an unsupervised scenario, we created new versions of the algorithms EC-
SMiner and CLAM, here named ECSMiner-WF and CLAM-WF, to update
the decision model without using external label feedback. Both the original
and modified versions use the same parameters and they are set as defined in
Table 2.

Since ECSMiner-WF and CLAM-WF assume that the true label of the
examples will not be available, their decision model is updated without exter-
nal feedback. For these algorithms, the initial training phase is not modified,
i.e., an ensemble of classifiers is created using labeled examples. In the on-
line phase, the examples not explained by the ensemble are marked with the
unknown profile and stored in a temporary memory. Clusters of unknown ex-
amples are obtained using the ND procedure described in Masud et al (2011).
Each time a ND procedure is executed, all the clusters obtained receive the
same label, which is a sequential number. New examples are classified using
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initially the ensemble of classifiers. If the ensemble cannot explain the example,
the decision model created from the clusters of unknown examples is used.

We also analyze how the performance of ECSMiner and CLAM is affected
when the parameter Tl is set considering a higher delay to obtain the true label
of the examples. For such, the parameter Tl is set to 10, 000. ECSMiner and
CLAM with this setting will be named ECSMiner-Delay and CLAM-Delay.

5.4 Evaluation of MINAS in comparison with the algorithms without
feedback

This first set of experiments compares MINAS with the algorithms without
feedback, ECSMiner-WF, CLAM-WF, and OLINDDA. It uses the data sets
described in Table 1 and the evaluation methodology described by Faria et al
(2013b). The ECSMiner-WF-KNN and ECSMiner-WF-Tree algorithms are
ECSMiner-WF using the classification learning algorithms KNN and C4.5,
respectively.

Figures 4, 5, 6, 7, and 8 illustrate the experimental results using artifi-
cial and real data sets. In these figures, the gray vertical lines represent the
timestamps where the algorithm identifies a NP. The continuous vertical lines
represent the UnkR measure and the dotted line the CER measure. The gray
lines at the top of the performance diagram show which of the timestamps
detected as a NP by the algorithm named at the bottom, have, in fact, at
least one example from a novel class.

Regarding the MOA data set (Figure 4), all algorithms present two peaks
for UnkR. These peaks indicate the timestamps where examples from the
two novel classes appear. After each peak, a NP is identified (vertical line),
and UnkR decreases, indicating that these examples compose a NP. For MI-
NAS, the peaks before and after the highest two peaks represent the concept
drift present in the known classes. These changes in the known concepts are
initially identified as unknown examples. These examples will compose clus-
ters representing extensions of the known concepts. Although all algorithms
present CER equals to zero over the stream, ECSMiner-WF and CLAM-WF
identify a larger number of NPs than MINAS. A possible explanation is that
ECSMiner-WF and CLAM-WF usually identify a new NP when a ND proce-
dure is executed, while MINAS identifies only when the distance between a new
micro-cluster and the closest existing micro-cluster is higher than a threshold.
Also, ECSMiner-WF and CLAM-WF present a sudden rise in CER
around 50k timestamp. This happens because at this time, a concept
drift in one of the known classes is introduced and these algorithms
could not identify it. In addition, a new class is appearing and these
algorithms could not identify a NP to represent it.

Regarding the SynEDC data set (Figure 5), MINAS identified peaks of
UnkR whenever examples from the novel classes arrive. For the timestamps
smaler than 100,000, most of the UnkR peaks are followed by a NP identifica-
tion and a decrease in the CER. After this timestamp, peaks of UnkR appear,
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Fig. 4: Performance of MINAS and ND algorithms from the literature in the
artificial data set - MOA
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(c) CLAM-WF-CER
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(e) ECSMiner-WF-KNN-CER
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(f) ECSMiner-WF-KNN-Unk
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(g) ECSMiner-WF-Tree-CER
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but there is no ND. We identify that the NPs were incorrectly identified as
extension of the known concepts, increasing CER, because the threshold value
was not able to properly separate novelty from extensions. ECSMiner-WF and
CLAM-WF present similar behavior. As the ND procedure is executed with
high frequency in these algorithms, when at least 50 examples are marked with
unknown, the number of generated NPs is high, which can be seen by the high
number of vertical lines in the figures 5c, 5e and 5g. Additionally, as these al-
gorithm do not identify extensions of the known concepts, the examples from
the novel classes are always considered NPs, what can explain the low CER
values.

MINAS, ECSMIner-WF-KNN and CLAM-WF present similar results for
the Covertype data set (Figure 6). The CER is high in the beginning of the
DS and decreases over the stream. Although MINAS identified some peaks
of UnkR, it obtained high values to CER. ECSMiner-WF-Tree presents the
lowest CER values, suggesting that the decision model based on decision trees
is a good choice for this data set.

Regarding the KDD data set (Figure 7), all algorithms present similar
behavior, with low CER over the stream. MINAS presented the highest UnkR
values. A possible reason is the more restrictive validation criterion used by
MINAS. As a result, these examples stay marked as unknown in the short-
term memory for a longer period, or they are moved from this memory to
create new micro-clusters before they are used. An important characteristic of
MINAS is to keep low CER values while maintaining the lowest number of
NPs.

A new version of KDD, containing only examples form the normal class in
the training set, was also used, named KDD-V2 (Figure 8). This data set was
created to compare the predictive performance of MINAS with OLINDDA,
which assumes that the training set is composed by only one class. OLINDDA
obtains higher values for CER than MINAS and presents few examples marked
with unknown. A possible reason is that the initial decision model, created in
the initial training phase, is very specialized to the normal class, classifying
every new example from the novel classes as belonging to the normal class. For
a better understanding of the OLINDDA results, a second execution of this
algorithm was performed, with only 6,000 examples in the training set and
the remaining in the test set. In this execution, OLINDDA obtained a better
performance (but worse than MINAS), with a low CER value, showing the
occurrence of overfitting in the first execution.

Analysing all these experiments, one can conclude MINAS achieves
similar or better performance than the competitors ECSMiner-WF,
CLAM-WF and OLINDDA, considering scenarios where the label
of the examples will not be available to update the decision model.
In addition, MINAS also identifies less NPs, which results in a less
complex model that processes the examples of stream in less time
(the time complexity will be discussed in Section 5.7). A weak point
of MINAS can be verified in the experiments using the SynEDC
data set, the difficult to distinguish between NPs or extensions. In
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Fig. 5: Performance of MINAS and ND algorithms from the literature in the
artificial data set - SynEDC
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(c) CLAM-WF-CER
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(e) ECSMiner-WF-KNN-CER
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(f) ECSMiner-WF-KNN-Unk
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(g) ECSMiner-WF-Tree-CER
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0 100 200 300

0
5

10
15

20

Timestamps (in thousands)

E
va

lu
at

io
n 

M
ea

su
re

 V
al

ue



MINAS: Multiclass Learning Algorithm for Novelty Detection in Data Streams 25

Fig. 6: Performance of MINAS and ND algorithms from the literature in the
real data set - FCT
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(c) CLAM-WF-CER
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(d) CLAM-WF-Unk
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(e) ECSMiner-WF-KNN-CER
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(f) ECSMiner-WF-KNN-Unk
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(g) ECSMiner-WF-Tree-CER
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(h) ECSMiner-WF-Tree-Unk
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Fig. 7: Performance of MINAS and ND algorithms from the literature in the
real data set - KDD
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(c) CLAM-WF-CER

0 100 200 300 400

0
10

20
30

40
50

Timestamps (in thousands)

E
va

lu
at

io
n 

M
ea

su
re

 V
al

ue

(d) CLAM-WF-Unk

0 100 200 300 400

0
10

20
30

40
50

60

Timestamps (in thousands)

E
va

lu
at

io
n 

M
ea

su
re

 V
al

ue

(e) ECSMiner-WF-KNN-CER
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(f) ECSMiner-WF-KNN-Unk
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(g) ECSMiner-WF-Tree-CER
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(h) ECSMiner-WF-Tree-Unk
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Fig. 8: Performance of MINAS and OLINDDA in the real data set - KDDV2
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(b) MINAS-Unk
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(c) OLINDDA-CER
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(d) OLINDDA-Unk
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this data set, the examples not explained by the current decision
model are marked with the unknown profile, but MINAS falls in
the identification if they represents extensions or NPs, increasing
the CER value.

5.5 Evaluation of MINAS with different settings

This section present the predictive performance of MINAS under different pa-
rameter settings using artificial and real data sets, as shown in Figures 9, 10,
11, and 12. MINAS is performed using the settings 2, 3 and 4, here named
MINAS-S2, MINAS-S3 and MINAS-S4, respectively, as describe in Table 3.
Besides, MINAS-S1-TV2 and MINAS-S1-TV3 represent MINAS using the set-
ting 1 and the threshold value set according to TV 2 and TV 3, respectively, as
described in Section 4.2.3.

In the MOA data set (Figure 9), MINAS presents different values to UnkR
for different settings, but it keeps CER value equal to zero over the stream.
For MINAS-S2, as the ND procedure is executed with high frequency and
the minimum number of examples to validate a cluster is small, the changes
in the known concepts are rapidly identified as extension of these concepts,
not increasing the number of unknown examples. A similar behavior is seen
in MINAS-S4. MINAS-S3 presents a different behavior, since extensions are
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not identified, but only NPs. This happens because the decision model is up-
dated whenever a new micro-cluster classifies an example (center and radius
updated). Thus, the decision model is able to deal with constant changes in
the known concepts representing them as extensions instead of NPs. MINAS-
S1-VL2 and MINAS-S1-VL3 present the same results, which are very similar
to MINAS-S1-VL1, presented in Figure 4a. This shows that the use of dif-
ferent strategies to compute the threshold value did not improve the MINAS
performance in the MOA data set.

Regarding the SynEDC data set (Figure 10), MINAS-S4 obtained the best
performance, while MINAS-S2 and MINAS-S3 detected a small number of
NPs and low UnkR values. MINAS-S3, which updates the center and radius
each time a new example is classified, despite presenting good results for the
MOA data set, was not successful with the SynEDC data set. This may have
occurred because, in the SynEDC data set, the clusters are very close and some
are overlapped. Thus, when MINAS-SF-C3 incorrectly classifies an example,
its corresponding micro-cluster is updated, modifying its center and radius
incorrectly. For MINAS-S2, the high CER values are explained because the
initial decision model is not adequate to the data. MINAS-S2 first uses the
CluStream algorithm producing 100 micro-clusters per class. Next, MINAS-S2
executes the K-Means algorithm, selecting the number of clusters using the
OMRk technique (Naldi et al, 2011), which select K = 2 as the best value.
Considering different threshold selection strategies, the VL3 approach VL3
was not adequate. Although the algorithm identified peaks of UnkR whenever
a new class appears, the new micro-clusters compound by examples from this
class were always identified as extension of the known concepts instead of
NPs. On the other hand, MINAS-S1-VL2 presents similar results to MINAS-
S1-VL1, as shown in Figure 5a.

Regarding the KDD data set (Figure 11), MINAS-S2, MINAS-S3 and
MINAS-S4 present similar behavior for the CERmeasure. However, for MINAS-
S2, this value increases at the end of the stream. A possible explanation for
a low CER value in MINAS-SF-C2, and consequent increase in the CER at
the end of the stream, is the inadequacy of the decision model created in the
initial training phase. Again, CluStream, K-Means and OMRk created micro-
clusters with high radius, making difficulty the separation between the known
and novel classes. Comparing MINAS-C3 and MINAS-C4, we can observe that
an increase in the frequency of ND procedure execution do not improve the
CER values. In addition, MINAS-C3 presents less NPs because it updates the
center and radius, constantly. MINAS-S1-TV2 and MINAS-S1-TV3 present
the worst results. The new micro-clusters computed from examples of novel
classes are incorrectly classified as extensions of the known classes, then in-
creasing the CER value.

Regarding the FCT data set (Figure 12), the different MINAS settings
presented high CER values. To increase the frequency of execution of the ND
procedure, to update the center and radius, constantly and to use different
strategies to select the best threshold value did not improve the MINAS per-
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Fig. 9: Performance of different settings to MINAS in the artificial data set -
MOA
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(b) MINAS-S2-Unk
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(c) MINAS-S3-CER
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(d) MINAS-S3-Unk
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(e) Minas-S4-CER
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(f) Minas-S4-Unk
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(g) MINAS-S1-TV2/TV3-CER
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(h) MINAS-S1-TV2/TV3-Unk
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Fig. 10: Performance of different settings to MINAS in the artificial data set -
SynEDC

(a) MINAS-S2-CER
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(b) MINAS-S2-Unk

0 100 200 300

0
10

20
30

40
50

Timestamps (in thousands)

E
va

lu
at

io
n 

M
ea

su
re

 V
al

ue

(c) MINAS-S3-CER
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(d) MINAS-S3-Unk
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(e) MINAS-S4-CER

0 100 200 300

0
10

20
30

40
50

Timestamps (in thousands)

E
va

lu
at

io
n 

M
ea

su
re

 V
al

ue

(f) MINAS-S4-Unk
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(g) MINAS-S1-TV2-CER
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(h) MINAS-S1-TV2-Unk
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(i) MINAS-S1-TV3-CER
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(j) MINAS-S1-TV3-Unk
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Fig. 11: Performance of different settings to MINAS in the real data sets -
KDD

(a) MINAS-S2-CER
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(b) MINAS-S2-Unk
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(c) MINAS-S3-CER
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(d) MINAS-S3-Unk
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(e) Minas-S4-CER
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(f) Minas-S4-C=Unk
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(g) MINAS-S1-TV2-CER
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(h) MINAS-S1-TV2-Unk
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(i) MINAS-S1-TV3-CER
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(j) MINAS-S1-TV3-Unk
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formance. The best results were achieved by MINAS-S1, as shown in Figure
6a.

Considering the artificial and real data sets, the different set-
tings of MINAS did not improve the original obtained results us-
ing the setting S1 (see Figures 4, 5, 6, and 7). The results using
MINAS-S2 showed that executing the algorithms Clustream and
KMeans produce a worst decision model that only executing Clus-
tream. MINAS-S3, whose aim is to update a micro-cluster when-
ever a new example is classified by it, also did not present good
results. The problem here is if example is incorrectly classified by
a micro-cluster, the characteristics of the micro-cluster are incor-
rectly update and this may lead to more errors. MINAS-S4, which
executes a ND procedure with a high frequency, produces a larger
number of NPs than the other settings of MINAS, but the CER
values are not decreased. Finally, the different approaches to find
the best threshold to separate extensions of NPs, named TV2 and
TV3, did not produced better results than TV1. The development
of other approaches to find the best threshold value is an important
issue to be treated in future studies.

5.6 Comparison of MINAS-AL in with ND algorithms using feedback

Most of the ND algorithms in DS applications assume that the true label of all
examples will be immediately available after its classification, or after a delay
of T l time units. Using these labels, the decision model can be constantly up-
dated. However, to obtain the true label of new examples is a time consuming
task, which requires the presence of a domain specialist and can be impractica-
ble in several scenarios. On the other hand, to ask a specialist the label of part
of the examples requires less effort and time and can contribute to improve the
algorithm performance. This section compares the original versions of CLAM
and ECSMiner, which assume that the true label of all examples is available,
with MINAS-AL, which uses active learning. In this comparison, we set the
T l parameter of the ECSMiner and CLAM algorithms to 10,000, to simulate
a scenario where the true label of the examples is obtained with a high de-
lay. The algorithms with this setting will be named here ECSMiner-Delay and
CLAM-Delay. Figures 13, 14, 15, and 16 show the results of the experimental
comparison.

For the MOA data set (Figure 13), all algorithms presented, in most of the
DS, CER equal to 0. The CER value for the CLAM-Delay and ECSMiner-
Delay algorithms increased at the end of the DS. Besides, CLAM-Delay and
ECSMiner-Delay detected a larger number of NPs than their original versions,
CLAM and ECSMiner. These results show that when the true label of the
examples is available with a delay, the decision model update is also delayed,
degrading the algorithm performance. MINAS-AL had a behavior similar to
MINAS-SF, with CER values comparable to ECSMiner and CLAM.
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Fig. 12: Performance of different settings to MINAS in the real data sets -
FCT

(a) MINAS-S2-CER
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(b) MINAS-S2-Unk
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(c) MINAS-S3-CER
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(d) MINAS-S3-Unk
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(e) MINAS-S4-CER

0 100 200 300 400 500

0
10

20
30

40
50

60

Timestamps (in thousands)

E
va

lu
at

io
n 

M
ea

su
re

 V
al

ue

(f) MINAS-S4-Unk
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(g) MINAS-S1-TV2-CER
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(h) MINAS-S1-TV2-Unk
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(i) MINAS-S1-TV3-CER
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(j) MINAS-S1-TV3-Unk
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Fig. 13: Performance of MINAS-AL and ND algorithms from the literature
using external feedback in the artificial data set - MOA
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(b) MINAS-AL-Unk
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(c) CLAM-CER
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(d) CLAM-Unk
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(e) CLAM-Delay-CER
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(f) CLAM-Delay-Unk
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(g) ECSMiner-KNN-CER
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(h) ECSMiner-KNN-Unk
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(i) ECSMiner-Delay-KNN-CER
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(j) ECSMiner-Delay-KNN-Unk
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Fig. 14: Performance of MINAS-AL and ND algorithms from the literature
using external feedback in the artificial data set - SynEDC
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(b) MINAS-AL-Unk
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(c) CLAM-CER
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(d) CLAM-Unk
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(e) CLAM-Delay-CER
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(f) CLAM-Delay-Unk
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(g) ECSMiner-KNN-CER
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(h) ECSMiner-KNN-Unk
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(i) ECSMiner-Delay-KNN-CER
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(j) ECSMiner-Delay-KNN-Unk
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Fig. 15: Performance of MINAS-AL and ND algorithms from the literature
with feedback in the real data set- FCT

(a) MINAS-AL-CER
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(b) MINAS-AL-Unk
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(c) CLAM-CER
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(d) CLAM-Unk
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(e) CLAM-Delay-CER
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(f) CLAM-Delay-Unk
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(g) ECSMiner-KNN-CER
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(h) ECSMiner-KNN-Unk
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(i) ECSMiner-Delay-KNN-CER
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(j) ECSMiner-Delay-KNN-Unk
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Fig. 16: Performance of MINAS-AL and ND algorithms from the literature
with feedback in the real data set- KDD
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(b) MINAS-AL-Unk
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(c) CLAM-CER
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(d) CLAM-Unk
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(e) CLAM-Delay-CER
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(f) CLAM-Delay-Unk
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(g) ECSMiner-KNN-CER
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(h) ECSMiner-KNN-Unk
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(i) ECSMiner-Delay-KNN-CER
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(j) ECSMiner-Delay-KNN-Unk
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For the SynEDC data set (Figure 14), the use of external feedback by the
CLAM and ECSMiner algorithms to update the decision model produced sig-
nificantly better results than the versions without feedback (see Figure 5c and
5e). CLAM-Delay and ECSMiner-Delay considerable increased the number of
NPs detected, represented by the vertical lines in the graphics. MINAS-AL
obtained better results than the version without feedback (see Figure 5a), as
shown by the decrease of CER. It must be observed, MINAS identified less
NPs than the other algorithms.

Regarding the KDD data set (Figure 16), there were no sensible modifica-
tions in the CER value for the CLAM, ECSMiner, ECSMiner-Delay, CLAM-
Delay, ECSMiner-WF (Figure 7e), and CLAM-WF (Figure 7c) algorithms.
The modified versions detected a higher number of NPs than the original ver-
sions. MINAS-AL had a worse performance than its original version. Although
this result looks contradictory, since it is expected a better performance when
the true label of some examples is available, this decrease may be due to
the evaluation methodology. In the evaluation methodology used in this work
(Faria et al, 2013a), MINAS was evaluated at each 1,000 timestamps, associ-
ating the NPss detected by the algorithm to the problem class.

For example, suppose the following scenario: a NP NP1, composed by 50
examples, was created in the timestamp t1 to represent the examples from the
novel class Cnov1. From t1 up to the timestamp t1 + ∆t, 200 examples from
the novel class Cnov2 appear and are incorrectly classified as belonging to the
novelty NP1. Thus, MINAS in t1 associates NP1 with the novel class Cnov1,
but in t1 + ∆t associates NP1 with the class Cnov2. Using MINAS-AL, after
the timestamp t1, the specialist will be asked to label the NP NP1. In order to
simulate the specialist behavior, MINAS-AL will label NP1 to Cnov1, because
this is the label of the majority of examples from this cluster. In the timestamp
t1 + ∆t, the NP1 will not be labeled again and the examples from the Cnov2

will be incorrectly classified as in the NP1, thus increasing the CER.

Regarding the FCT data set (Figure 15), the versions of CLAM and EC-
SMiner with external feedback did not improve the performance of the versions
without feedback (CLAM-WF and ECSMiner-WF), as shown in the Figures
6c and 6e, respectively. CLAM-Delay and ECSMiner-Delay detected a higher
number of NPs than the original versions. MINAS-AL presented lower CER
values than CLAM and CLAM-Delay and results similar to ECSMiner and
ECSMiner-Delay. In this data set, updating the decision model using all the
true labels of the examples did not improve the performance. The best results
for this data set were obtained by ECSMiner using a decision tree induction
algorithm 6g.

Considering the different artificial and real data sets, one can
observe MINAS-AL achieves comparable results to ECSMiner and
CLAM using only few labeled examples. Here, the main limitation
of MINAS-AL is the difficulty to distinguish NPs from extensions,
specially in scenarios with a large number of classes as the SynEDC
data set.
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5.7 Time Analysis

In addition to analyse the classifier error and model complexity,
another important issue to be considered by ND algorithms for DSs
is its time performance.

Figure 17 shows a time comparative analysis among the algo-
rithms without feedback using four different data sets. In all of them,
MINAS spent less time to process the examples of the stream than
the other algorithms, while CLAM-WF is the most costly. A pos-
sible motivation to explain the higher time spent by CLAM is it
uses an ensemble of classifiers, one per class, where each classifier is
composed by a set of micro-clusters, while ECSMiner-WF uses only
one ensemble and MINAS uses a set of micro-clusters as the deci-
sion model. ECSMiner-WF as well as CLAM-WF identify a larger
number of NPs than MINAS, specially because they execute a ND
procedure with a higher frequency. The process to identify NPs is
costly because it executes a clustering algorithm.

Analysing the original versions of ECSMiner and CLAM, which
supposes that the true label will be available to update the deci-
sion model, the time spent to process the stream is still higher than
ECSMiner-WF and CLAM-WF, because they need update the en-
semble of classifiers constantly. In contrast, MINAS-AL, which up-
dates the decision model using only some labeled examples, does
not spend more time than MINAS because it only changes the label
associated to a NP.

5.8 Critical Analysis of MINAS in comparison against state-of-art

This section aims to discuss the main strong and weakness of the
algorithms used in the experiments.

For scenarios, in which the label of the examples is available im-
mediately or after a small delay (for example, 1000 time units), the
best performance is achieved using the original version of ECSMiner
and CLAM algorithms. The behind motivation is they update the
decision model constantly with supervised information, using la-
beled examples. Thus is possible to train a new classifier with the
most recent characteristics of the stream and replace an outdated
one. But, on the other hand, the constant training of a new clas-
sifier and its replacement by an outdated one are task that spend
time. In addition, obtaining the true label of all examples is a time
consuming task and can be impracticable in several scenarios. An-
other important point to be highlighted is as the delay to obtain te
true label of the examples increases, the performance of these algo-
rithms also decreases. Thus, as the decision model is not updated,
for each time window, new NPs are detected, and the classifier error
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Fig. 17: Time Performance of MINAS-AL and ND algorithms from the liter-
ature without feedback in artificial and real data sets
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increases. This happens because in these algorithms, the NPs de-
tected in a time window are not used to classify the examples from
a new window, i.e. they are not added to the decision model. The
decision model is only updated using labeled examples.

Considering a more realistic scenario, where only few examples
of the stream will be labeled after a delay, there is a lack of ap-
proaches to address it. MINAS-AL comes as an approach to address
this problem. Here, the important point to be highlighted is even
MINAS-AL uses only few labeled examples, its performance is com-
parable to algorithms that update the decision model considering all
examples will be labeled. The major weakness of MINAS-AL, as well
as the unsupervised version, is the difficult of automatically identify
a threshold value that can distinguish the different NPs properly,
specially when the number of classes is large. In this case, MINAS
can identify the examples not explained by the system as unknown,
builds new NPs using these examples, but fails in identify if a NP
is an extension or a NP. These results can be viewed in the exper-
iments using the SynEDC data set (see Figure 5a), which contains
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20 classes. On the other hand, a strong point of MINAS-AL is its
time complexity O(1) to update the decision model when the label
of the examples is obtained, requiring only that the center of the
new cluster, which represents a new NP, be labeled. Another im-
portant strong point is, if the label of the examples are obtained
after a longer delay, its performance do not decrease. This happens,
because the NP detected by the algorithm will be added to the deci-
sion model and new examples can be classified using them. However,
the NP will not associate to a class, but they will be named NP1,
NP2, etc.

For a scenario, in which the true label of the examples will not
be available and the decision model needs to be updated without
feedback, MINAS presents better performance than the main com-
petitor, OLINDDA. The main limitation of OLINDDA is the normal
concept is composed by only one class, which restricted the experi-
ments to only one data set. In order to better study this scenario, we
developed modifications in the original versions of ECSMiner and
CLAM algorithms to update the decision model without feedback,
i.e., considering that the true label of the examples will not be avail-
able. The experiments have showed MINAS achieved performance
comparable to the main competitors, while maintains a less complex
model. One of the motivations is MINAS executes a ND procedure
but only the cohesive and representative clusters are promoted to
NPs. Here, again the main limitation of MINAS is the difficult in
distinguish extensions from NPs, which contribute to increase the
classifier error, mainly in the SynEDC data set (see Figure xx). As
the new proposed versions of ECSMiner and CLAM (ECSMiner-
WF and CLAM-WF) do not distinguish between concept drift or
concept evolution, both will be identified as a new NP, which explain
the higher number of NP identified by these algorithms.

6 Conclusions

This work presented and evaluated a new algorithm for ND in multiclass DSs,
named MINAS. MINAS creates a decision model in the initial training phase,
composed by a set of micro-clusters, representing the different known classes
of the problem. In the online phase, MINAS classifies new examples and de-
tects NPs. In this phase, MINAS updates its decision model without external
feedback by addition new micro-clusters, updating existing micro-clusters, or
forgetting outdated micro-clusters. MINAS also treats recurring contexts. It
does so by maintaining a sleep memory, which allows to forget micro-clusters
or recover them. MINAS presents innovative features, when compared with
the existing ND algorithms:

– Updates the decision model without external feedback, or considering a
small set of labeled examples;
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– Treats ND as a multiclass task, where the normal and novelty concepts can
be composed by one or more classes;

– Uses a single model to represent the known classes, extensions and NPs.
The experimental results show that MINAS has a predictive performance
comparable to the ND algorithms found in the literature, even updating
the decision model without external feedback.

This work opens up several perspectives for future works, especially in the
development of new strategies to update the decision model when only a small
set of labeled examples is available. Other perspectives include to investigate
new strategies to address recurring contexts and decision model update based
on unlabeled examples.

As next steps, we intend to investigate new strategies to automatic select
the best threshold value and mechanisms to use active learning. Besides, we
intend to improve the treatment of noise and outliers, as well as recurring
contexts.
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A Appendix: Complexity Analysis

The computational cost is an important aspect to be considered in the development of ND
algorithms for DSs. One of the requirements for ND algorithms is to execute only one scan
in the data. This is very important because the memory is short when compared with the
size of the DS.

In MINAS, the initial training phase is batch and run on a small portion of the data
set. In this phase, a clustering algorithm is executed for each one of the c known classes,
resulting in k micro-clusters per class.

MINAS can use two algorithms in the initial trainin phase phase, CluStream and K-
Means. Using K-means, the time complexity for each known class is O(k × N × d × v),
where k is the number of micro-clusters, N is the number of examples to be clustered, d is
the data dimensionality and v is the maximum number of iterations of K-means. Using the
CluStream algorithm, the first step is to initialize the micro-clusters running K-Means on the
first InitNumber examples. The next step associates each example to one micro-cluster. The
time complexity for the execution of the K-Means for each class is O(k×InitNumber×d×v).
The complexity to include each example (of each class) in its closest micro-cluster is O(k×d).
If the micro-cluster can absorb the example, its statistic summary is updated. Otherwise,
the two closest micro-clusters are identified, with complexity O(k2 × d), and merged, with
time complexity O(1).

In the online phase, whenever a new example arrives, its closest micro-cluster is identi-
fied. For such, each one of the q micro-clusters that composes the decision model is consulted,
with time complexity O(q×d). The set of micro-cluster in the decision model, q, is composed
by the micro-cluster learned in the initial training phase, k micro-clusters for each known
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class, plus micro-clusters learned online, the extensions and NPs. Regarding this sum, it is
necessary to subtract the micro-clusters moved to the sleep memory over time. Although us-
ing a large number of micro-clusters allows separability between classes and representation of
classes with different shapes, the classification of new examples has a higher computational
cost. In addition, the maximal value of q is determined by the memory size.

For the continuous identification of NPs, examples from the short-term memory are
clustered using the K-Means or Clustream algorithm, whose time complexity was previously
discussed. To identify if a new micro-cluster is an extension or a new NP, its closer micro-
cluster is identified, with time complexity O(q× d). The complexity of the task of move the
old micro-clusters to the sleep memory is O(q × d).
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