
João Gama

Knowledge Discovery from
Data Streams

ii

Contents

1 Knowledge Discovery from Data Streams 3

1.1 Introduction . 3

1.2 An Illustrative Example . 4

1.3 A World in Movement . 6

1.4 Data Mining and Data Streams 7

2 Introduction to Data Streams 9

2.1 Data Stream Models . 9

2.1.1 Research Issues in Data Streams Management Systems 10

2.1.2 An Illustrative Problem 10

2.2 Basic Streaming Methods . 11

2.2.1 Illustrative Examples 12

2.2.1.1 Counting the Number of Occurrence of the El-
ements in a Stream. 12

2.2.1.2 Counting the Number of Distinct Values in a
Stream . 13

2.2.2 Bounds of Random Variables 14

2.2.3 Poisson Processes . 15

2.2.4 Maintaining Simple Statistics from Data Streams . . . 16

2.2.5 Sliding Windows . 16

2.2.5.1 Computing Statistics over Sliding Windows:
The ADWIN algorithm 18

2.2.6 Data Synopsis . 21

2.2.6.1 Sampling . 21

2.2.6.2 Synopsis and Histograms 22

2.2.6.3 Wavelets . 23

2.2.6.4 Discrete Fourier Transform 24

2.3 Illustrative Applications . 25

2.3.1 A datawarehouse problem: Hot-Lists 25

2.3.2 Computing the Entropy in a Stream 26

2.3.3 Monitoring Correlations Between Data Streams 28

2.3.4 Monitoring Threshold Functions Over Distributed Data
Streams . 31

2.4 Notes . 33

i

ii

3 Change Detection 35

3.1 Introduction . 35

3.2 Tracking Drifting Concepts 36

3.2.1 The Nature of Change. 36

3.2.2 Characterization of Drift Detection Methods 38

3.2.2.1 Data Management 38

3.2.2.2 Detection Methods 40

3.2.2.3 Adaptation Methods 41

3.2.2.4 Decision Model Management 42

3.2.3 A Note on Evaluating Change Detection Methods . . 43

3.3 Monitoring the Learning Process 43

3.3.1 Drift Detection using Statistical Process Control . . . 44

3.3.2 An Illustrative Example 46

3.4 Final Remarks . 48

3.5 Notes . 49

4 Maintaining Histograms from Data Streams 51

4.1 Introduction . 51

4.2 Histograms from Data Streams 52

4.2.1 K-buckets Histograms 52

4.2.2 Exponential Histograms 53

4.2.2.1 An Illustrative Example 54

4.2.2.2 Discussion 54

4.3 The Partition Incremental Discretization Algorithm - PiD . . 55

4.3.1 Analysis of the Algorithm 57

4.3.2 Change Detection in Histograms 58

4.3.3 An Illustrative Example 59

4.4 Applications to Data Mining 60

4.4.1 Applying PiD in Supervised Learning 61

4.4.2 Time-Changing Environments 62

4.5 Notes . 63

5 Evaluating Streaming Algorithms 65

5.1 Introduction . 65

5.2 Learning from Data Streams 66

5.3 Evaluation Issues . 67

5.3.1 Design of Evaluation Experiments 68

5.3.2 Evaluation Metrics . 69

5.3.2.1 Error Estimators using a Single Algorithm and
a Single Dataset 70

5.3.2.2 An Illustrative Example. 70

5.3.3 Comparative Assessment 71

5.3.3.1 The 0− 1 loss function 72

5.3.3.2 Illustrative Example. 73

iii

5.3.4 Evaluation Methodology in Non-Stationary Environments
74

5.3.4.1 The Page-Hinkley Algorithm 74
5.3.4.2 Illustrative Example. 75

5.4 Lessons Learned and Open Issues 77
5.5 Notes . 79

6 Clustering from Data Streams 81
6.1 Introduction . 81
6.2 Clustering Examples . 82

6.2.1 Basic Concepts . 82
6.2.2 Partitioning Clustering 84

6.2.2.1 The Leader Algorithm 84
6.2.2.2 Single Pass k-Means 84

6.2.3 Hierarchical Clustering 85
6.2.4 Micro Clustering . 87

6.2.4.1 Discussion 87
6.2.4.2 Monitoring Cluster Evolution 88

6.2.5 Grid Clustering . 88
6.2.5.1 Computing the Fractal Dimension 90
6.2.5.2 Fractal Clustering 90

6.3 Clustering Variables . 92
6.3.1 A Hierarchical Approach 92

6.3.1.1 Growing the Hierarchy 93
6.3.1.2 Aggregating at Concept Drift Detection . . . 96
6.3.1.3 Analysis of the Algorithm 97

6.4 Notes . 98

7 Frequent Pattern Mining 99
7.1 Introduction to Frequent Itemset Mining 99

7.1.1 The Search Space . 100
7.1.2 The FP-growth Algorithm 102
7.1.3 Summarizing Itemsets 102

7.2 Heavy Hitters . 103
7.3 Mining Frequent Itemsets from Data Streams 105

7.3.1 Landmark Windows 105
7.3.1.1 The LossyCounting Algorithm 106
7.3.1.2 Frequent Itemsets using LossyCounting . . . 106

7.3.2 Mining Recent Frequent Itemsets 107
7.3.2.1 Maintaining Frequent Itemsets in Sliding Win-

dows . 107
7.3.2.2 Mining Closed Frequent Itemsets over Sliding

Windows . 108
7.3.3 Frequent Itemsets at Multiple Time Granularities . . . 110

7.4 Sequence Pattern Mining . 112

iv

7.4.1 Reservoir Sampling for Sequential Pattern Mining over
Data Streams. 113

7.5 Notes . 115

8 Decision Trees from Data Streams 117
8.1 Introduction . 117
8.2 The Very Fast Decision Tree Algorithm 118

8.2.1 VFDT- The Base Algorithm 118
8.2.2 Analysis of the VFDT Algorithm 120

8.3 Extensions to the Basic Algorithm 121
8.3.1 Processing Continuous Attributes 121

8.3.1.1 Exhaustive Search 122
8.3.1.2 Discriminant Analysis 124

8.3.2 Functional Tree Leaves. 125
8.3.3 Concept Drift . 128

8.3.3.1 Detecting Changes 128
8.3.3.2 Reacting to Changes 129

8.3.4 Final Comments . 130
8.4 OLIN: Info-Fuzzy Algorithms 132
8.5 Notes . 135

9 Novelty Detection in Data Streams 137
9.1 Introduction . 137
9.2 Learning and Novelty . 138

9.2.1 Desiderata for Novelty Detection 139
9.3 Novelty Detection as a One-Class Classification Problem . . 139

9.3.1 Autoassociator Networks 140
9.3.2 The Positive Naive-Bayes 141
9.3.3 Decision Trees for One-Class Classification 142
9.3.4 The One-Class SVM 142
9.3.5 Evaluation of One-Class Classification Algorithms . . 143

9.4 Learning New Concepts . 145
9.4.1 Approaches Based on Extreme Values 145
9.4.2 Approaches Based on the Decision Structure 146
9.4.3 Approaches Based on Frequency 147
9.4.4 Approaches Based on Distances 148

9.5 The Online Novelty and Drift Detection Algorithm 148
9.5.1 Initial Learning Phase 150
9.5.2 Continuous Unsupervised Learning Phase 151

9.5.2.1 Identifying Novel Concepts 151
9.5.2.2 Attempting to Determine the Nature of New

Concepts . 153
9.5.2.3 Merging Similar Concepts 153
9.5.2.4 Automatically Adapting the Number of Clus-

ters . 154

v

9.5.3 Computational Cost 154

9.6 Notes . 155

10 Ensembles of Classifiers 157

10.1 Introduction . 157

10.2 Linear Combination of Ensembles 159

10.3 Sampling from a Training Set 160

10.3.1 Online Bagging . 161

10.3.2 Online Boosting . 162

10.4 Ensembles of Trees . 164

10.4.1 Option Trees . 164

10.4.2 Forest of Trees . 165

10.4.2.1 Generating Forest of Trees 166

10.4.2.2 Classifying Test Examples 166

10.5 Adapting to Drift using Ensembles of Classifiers 166

10.6 Mining Skewed Data Streams with Ensembles 169

10.7 Notes . 170

11 Time Series Data Streams 171

11.1 Introduction to Time series Analysis 171

11.1.1 Trend . 171

11.1.2 Seasonality . 173

11.1.3 Stationarity . 173

11.2 Time-series Prediction . 173

11.2.1 The Kalman Filter . 174

11.2.2 Least Mean Squares 177

11.2.3 Neural Nets and Data Streams 177

11.2.3.1 Stochastic Sequential Learning of Neural Net-
works . 178

11.2.3.2 Illustrative Example: Load Forecast in Data
Streams . 179

11.3 Similarity between Time-series 181

11.3.1 Euclidean Distance . 181

11.3.2 Dynamic Time-Warping 182

11.4 Symbolic Approximation – SAX 184

11.4.1 The SAX Transform . 184

11.4.1.1 Piecewise Aggregate Approximation (PAA) . 185

11.4.1.2 Symbolic Discretization 185

11.4.1.3 Distance Measure 186

11.4.1.4 Discussion 186

11.4.2 Finding Motifs using SAX 186

11.4.3 Finding Discords using SAX 187

11.5 Notes . 188

vi

12 Ubiquitous Data Mining 189
12.1 Introduction to Ubiquitous Data Mining 189
12.2 Distributed Data Stream Monitoring 190

12.2.1 Distributed Computing of Linear Functions 191
12.2.1.1 A General Algorithm for Computing Linear

Functions . 192
12.2.2 Computing Sparse Correlation Matrices Efficiently . . 193

12.2.2.1 Monitoring Sparse Correlation Matrices . . . 195
12.2.2.2 Detecting Significant Correlations 195
12.2.2.3 Dealing with Data Streams 196

12.3 Distributed Clustering . 197
12.3.1 Conquering the Divide 197

12.3.1.1 Furthest Point Clustering. 197
12.3.1.2 The Parallel Guessing Clustering 197

12.3.2 DGClust – Distributed Grid Clustering 198
12.3.2.1 Local Adaptive Grid 199
12.3.2.2 Frequent State Monitoring 199
12.3.2.3 Centralized Online Clustering 200

12.4 Algorithm Granularity . 201
12.4.1 Algorithm Granularity Overview 202
12.4.2 Formalization of Algorithm Granularity 204

12.4.2.1 Algorithm Granularity Procedure 204
12.4.2.2 Algorithm Output Granularity 205

12.5 Notes . 208

13 Final Comments 209
13.1 The Next Generation of Knowledge Discovery 209

13.1.1 Mining Spatial Data 210
13.1.2 The Time Situation of Data 210
13.1.3 Structured Data . 210

13.2 Where We Want to Go . 210

Bibliography 213

Index 237

A Resources 241
A.1 Software . 241
A.2 Data Sets . 241

List of Tables

2.1 Comparison between Database Management Systems and Data
Stream Management Systems. 10

2.2 Differences between traditional and stream data query process-
ing. 11

4.1 Average results of evaluation metrics of the quality of dis-
cretization. 60

5.1 Evaluation methods in stream mining literature. 68
5.2 Impact of fading factors in change detection. 77

7.1 A transaction database and all possible frequent itemsets. . . 100
7.2 The search space to find all possible frequent itemsets. 101

8.1 Contingency table to compute the entropy of a splitting test. 124

9.1 Confusion matrix to evaluate one-class classifiers. 143

11.1 The two time-series used in the example of dynamic time-
warping. 182

11.2 SAX lookup table. 185

vii

viii

List of Figures

1.1 Example of a electrical grid. 5

2.1 The Count-Min Sketch. 12
2.2 Poisson random variables. 15
2.3 Sequence based windows. 17
2.4 Tilted Time Windows. 17
2.5 Output of algorithm ADWIN for different change rates. 20
2.6 The three aggregation levels in StatStream. 29
2.7 The vector space. 32
2.8 The bounding theorem. 32

3.1 Three illustrative examples of change. 37
3.2 Main dimensions in change detection methods in data mining. 38
3.3 Illustrative example of the Page-Hinkley test. 42
3.4 The space state transition graph. 44
3.5 Dynamically constructed Time Window. 45
3.6 Illustrative example of using the SPC algorithm in the Sea con-

cept dataset. 48

4.1 Split & Merge and Merge & Split Operators. 53
4.2 Illustrative example of the two layers in PiD. 57
4.3 Comparison between batch histograms and PiD histograms. . 59
4.4 The evolution of the partitions at the second layer. 63

5.1 Performance evolution of VFDT in a web-mining problem. . 67
5.2 Comparison of error evolution as estimated by holdout and pre-

quential strategies. 71
5.3 Comparison of prequential error evolution between holdout,

prequential and prequential over sliding windows. 72
5.4 Comparison between two different neural-networks topologies

in a electrical load-demand problem. 73
5.5 Plot of the Qi statistic over a sliding window. 74
5.6 The evolution of signed McNemar statistic between two algo-

rithms. 75
5.7 The evolution of signed McNemar statistic using sliding win-

dows and fading factors. 76

ix

x

5.8 Evolution of the Page-Hinkley test statistic 77
5.9 Evolution of the Page-Hinkley test statistic using fading factors. 78

6.1 The Clustering Feature Tree in BIRCH. 86
6.2 Fractal dimension: the box-counting plot. 90
6.3 ODAC structure evolution in a time-changing data set. 97

7.1 Frequent-Pattern Trees . 102
7.2 The FP-growth algorithm and FP-stream structure. 110
7.3 Stream model with 3 different sequences ids with their associ-

ated transactions. 113

8.1 Illustrative example of a decision tree and the time-window
associated with each node. 121

8.2 Sufficient statistics of a continuous attribute in a leaf. 122
8.3 Illustrative example of the solutions of equation 8.4. 125
8.4 Illustrative example on updating error statistics in a node. . . 129
8.5 The Hyper-plane problem. 130
8.6 A two-layered structure Info-Fuzzy Network. 132
8.7 OLIN-based System Architecture. 133

9.1 Architecture of a neural network for one-class classification. . 140
9.2 Illustrative examples of Precision-Recall and ROC graphs. . . 144
9.3 Overview of the Online Novelty and Drift Detection Algorithm. 149
9.4 Illustrative example of OLINDDA algorithm. 150

10.1 Error rate versus number of classifiers in an ensemble. 158
10.2 Illustrative example of online Bagging. 161
10.3 Illustrative example of online Boosting. 164

11.1 Time-series Example. 172
11.2 Time-series auto-correlation example. 174
11.3 Kalman filter as a hidden Markov model. 176
11.4 Memory schema in Electricity Demand Forecast. 180
11.5 Euclidean Distance between time-series Q and C. 182
11.6 Dynamic time-warping. 183
11.7 DTW-Alignment between the two time series 184
11.8 The main steps in SAX. 186

12.1 Local L2 Thresholding. 192
12.2 Illustrative Example of Distributed Clustering using DGClust. 198
12.3 DGClust results for different grid parameters. 201
12.4 The Effect of Algorithm Granularity on Computational Re-

sources . 203
12.5 The Algorithm Output Granularity Approach. 206
12.6 Algorithm Output Granularity Stages. 207

List of Algorithms

1 The ADWIN Algorithm. 19

2 The Reservoir Sampling Algorithm. 22

3 The Frequent Algorithm. 26

4 The Space-saving Algorithm. 26

5 Basic Estimator for the Entropy Norm. 27

6 The Maintain Samples Algorithm. 28

7 The Monitoring Threshold Functions Algorithm (sensor node). 33

8 The SPC Algorithm . 47

9 The PiD algorithm for updating layer1. 56

10 The Leader Clustering Algorithm. 84

11 Algorithm for Single Pass k-Means Clustering. 85

12 Algorithm for Fractal Clustering: Initialization phase. 89

13 Algorithm for Fractal Clustering: Incremental step. 91

14 Algorithm for Fractal Clustering: Tracking cluster changes. . . 91

15 The ODAC Global Algorithm. 94

16 ODAC: The TestSplit Algorithm 96

17 The FP-tree Algorithm. 103

18 The Karp Algorithm. 105

19 The LossyCounting Algorithm. 107

20 VFDT: The Hoeffding Tree Algorithm. 119

21 The InsertValueBtree(xj , y, Btree) Algorithm. 123

22 The LessThan(i, k, BTree) Algorithm. 123

23 The Algorithm to Process Numeric Attributes. 127

24 The Weighted-Majority Algorithm. 160

25 The Online Bagging Algorithm. 162

26 The Online Boosting Algorithm. 163

27 The Add Expert algorithm for discrete classes. 168

28 The Add Expert algorithm for continuous classes. 168

29 The Skewed Ensemble Algorithm. 170

xi

xii

30 The Randomized Distributed Dot Product Algorithm. 191
31 Local L2 Thresholding . 194

1

Preface

In spite of being a small country, concerning geographic area and pop-
ulation size, Portugal has a very active and respected Artificial Intelligence
community, with a good number of researchers well known internationally for
the high quality of their work and relevant contributions in this area.

One of these well known researchers is João Gama from the University of
Porto. João Gama is one of the leading investigators in of the current hottest
research topics in Machine Learning and Data Mining: Data Streams.

Although other books have been published covering important aspects of
Data Streams, these books are either mainly related with Database aspects of
Data Streams or a collection of chapter contributions for different aspects of
this issue.

This book is the first book to didactically cover in a clear, comprehensive
and mathematical rigorous way the main Machine Learning related aspects of
this relevant research field. The book not only presents the main fundamentals
important to fully understand Data Streams, but also describes important
applications. The book also discusses some of the main challenges of Data
Mining future research, when Stream Mining will be in the core of many
applications. These challenges will have to be addressed for the design of useful
and efficient Data Mining solutions able to deal with real world problems. It
is important to stress that, in spite of this book being mainly about Data
Streams, most of the concepts presented are valid for different areas of Machine
Learning and Data Mining. Therefore, the book will be an up-to-date, broad
and useful source of reference for all those interested in knowledge acquisition
by learning techniques.

André Ponce de Leon Ferreira de Carvalho
University S. Paulo

2

Acknowledgments

Life is the art of drawing sufficient conclusions from insufficient premises.
Samuel Butler

This book is a result of the Knowledge Discovery from Ubiquitous Data

Streams project funded by the Portuguese Fundação para a Ciência e Tec-
nologia. We thank FCT that funded, in the last 5 years, research projects in
this topic. The work, analysis, discussions, and debates with several students
and researchers strong influenced and sedimented the issues presented here.
I must mention Ricardo Rocha, Ricardo Fernandes and Pedro Medas due to
their work on decision trees, Pedro Rodrigues on Clustering, Gladys Castillo
and Milton Severo on Change Detection, Eduardo Spinosa, Andre Carvalho
on Novelty Detection and Carlos Pinto and Raquel Sebastião on Histograms.
To all of them, Thank you!

The Knowledge Discovery in Ubiquitous Environments project, funded
by the European Union under IST, was another major source of inspiration.
All the meetings, events, activities, and discussions contributed to improve
our vision on the role of Data Mining in a world in movement.

A special thanks to those who contributed with material to this book.
André de Carvalho who contributed with the preface and reviewed the book,
Albert Bifet and Ricard Gavaldà contributed with Section 2.2.5.1, Mark Last
contributed with Section 8.4, Mohamed Gaber with Section 12.4, and Chedy
Raissi and Pascal Poncelet in Section 7.4.1. Together with Jesus Aguilar, we
organize a stream of workshops in data streams. They constitute the backbone
of this book.

A word of gratitude to my family and friends. They were the major source
of support.

Chapter 1

Knowledge Discovery from Data
Streams

1.1 Introduction

In the last three decades, machine learning research and practice have
focused on batch learning usually using small datasets. In batch learning,
the whole training data is available to the algorithm, that outputs a decision
model after processing the data eventually (or most of the times) multiple
times. The rationale behind this practice is that examples are generated at
random accordingly to some stationary probability distribution. Most learners
use a greedy, hill-climbing search in the space of models. They are prone
to high-variance and overfiting problems. Brain and Webb (2002) pointed-
out the relation between variance and data sample size. When learning from
small datasets the main problem is variance reduction, while learning from
large datasets may be more effective when using algorithms that place greater
emphasis on bias management.

In most challenging applications, learning algorithms act in dynamic en-
vironments, where the data are collected over time. A desirable property of
these algorithms is the ability of incorporating new data. Some supervised
learning algorithms are naturally incremental, for example k-nearest neigh-
bors, and naive-Bayes. Others, like decision trees, require substantial changes
to make incremental induction. Moreover, if the process is not strictly station-
ary (as most of real world applications), the target concept could gradually
change over time. Incremental learning is a necessary property but not suf-
ficient. Incremental learning systems must have mechanisms to incorporate
concept drift, forgetting outdated data and adapt to the most recent state of
the nature.

What distinguishes current data sets from earlier ones is automatic data
feeds. We do not just have people who are entering information into a com-
puter. Instead, we have computers entering data into each other. Nowadays,
there are applications in which the data are better modeled not as persistent
tables but rather as transient data streams. Examples of such applications in-
clude network monitoring, web mining, sensor networks, telecommunications
data management, and financial applications. In these applications, it is not
feasible to load the arriving data into a traditional Data Base Management

3

4 Knowledge Discovery from Data Streams

System (DBMS), which are not traditionally designed to directly support the
continuous queries required in these application (Babcock et al., 2002).

1.2 An Illustrative Example

Sensors distributed all around electrical-power distribution networks pro-
duce streams of data at high-speed. Electricity distribution companies usually
manage that information using SCADA/DMS tools (Supervisory Control and
Data Acquisition / Distribution Management Systems). One of their impor-
tant tasks is to forecast the electrical load (electricity demand) for a given
sub-network of consumers. Load forecast systems provide a relevant support
tool for operational management of an electricity distribution network, since
they enable the identification of critical points in load evolution, allowing
necessary corrections within available time, and planning strategies for differ-
ent horizons. This is of great economical interest, given that companies make
decisions to buy or to sell energy based on these predictions.

The scenario just described is easily extended for water and gas distribu-
tion grids. In these applications, data are collected from a huge set of sensors
distributed all around the networks. The number of sensors can increase over
time, and, because they might came from different generations, they send
information at different time scales, speeds, and granularities. Sensors usu-
ally act in adversary conditions, are prone to noise, weather conditions, com-
munications failures, battery limits, etc. Data continuously flow possibly at
high-speed, in a dynamic and time-changing environment.

Data mining in this context requires a continuous processing of the incom-
ing data monitoring trends, and detecting changes. In this context, we can
identify several relevant data mining tasks:

• Cluster Analysis

– Identification of Profiles: Urban, Rural, Industrial, etc;

• Predictive Analysis

– Predict the value measured by each sensor for different time hori-
zons;

– Prediction of peeks in the demand;

• Monitoring evolution

– Change Detection

∗ Detect changes in the behavior of sensors;

∗ Detect failures and abnormal activities;

Knowledge Discovery from Data Streams 5

Figure 1.1: Example of a electrical grid. Sensors are represented by gray
dots. Sensors continuously measure quantities of interest corresponding to the
electricity demand of a covered geographical area.

– Extreme Values, Anomaly and Outliers Detection

∗ Identification of peeks in the demand;

∗ Identification of critical points in load evolution;

• Exploitation of background information given by the topology and geo-
graphical information of the network.

The usual approach for dealing with these tasks consists of: i) Select a
finite data sample; and ii) Generate a static model. Several types of models
have been used for such: different clustering algorithms and structures, various
neural networks based models, Kalman filters, Wavelets, etc. This strategy
can exhibit very good performance in the next few months, but, later, the
performance starts degrading requiring re-train all decision models as times
goes by. What is the problem? The problem probably is related to the use of
static decision models. Traditional systems that are one-shot, memory based,
trained from fixed training sets and static models are not prepared to process
the high detailed evolving data. Thus, they are not able neither to continuously
maintain a predictive model consistent with the actual state of the nature,
nor to quickly react to changes. Moreover, with the evolution of hardware
components, these sensors are acquiring computational power. The challenge
will be to run the predictive model in the sensors themselves.

A basic question is: How can we collect labeled examples in real-time?
Suppose that at time t our predictive model made a prediction ŷt+k, for the

6 Knowledge Discovery from Data Streams

time t + k, where k is the desired horizon forecast. Later on, at time t + k
the sensor measures the quantity of interest yt+k. We can then estimate the
loss of our prediction L(ŷt+k, yt+k) 1. We do not need to know the true value
yi, for all points in the stream. The framework can be used in situations of
limited feedback, by computing the loss function and L for points where yi is
known. A typical example is fraud detection in credit card usage. The system
receives and classifies requests from transactions in real-time. The prediction
can be useful for the decision of whether to accept the request. Later on,
companies send bank statements to the credit card users. The system receives
the feedback whenever the user denounces a fraudulent transaction.

Given its relevant application and strong financial implications, electricity
load forecast has been targeted by several works, mainly relying on the non-
linearity and generalizing capacities of neural networks, which combine a cyclic
factor and an auto-regressive one to achieve good results (Hippert et al., 2001).
Nevertheless, static iteration-based training, usually applied to estimate the
best weights for the network connections, is not adequate for the high speed
stream of data usually encountered.

1.3 A World in Movement

The constraints just enumerated imply to switch from one-shot learning
tasks to a lifelong and spatially pervasive perspective. From this perspective,
induced by ubiquitous environments, finite training sets, static models, and
stationary distributions must be completely redefined. These aspects entail
new characteristics for the data:

• Data are made available through unlimited streams that continuously
flow, eventually at high-speed, over time.

• The underlying regularities may evolve over time rather than be station-
ary;

• The data can no longer be considered as independent and identically
distributed;

• The data is now often spatially as well as time situated;

But does these characteristics really change the essence of machine learn-
ing? Would not simple adaptations to existing learning algorithms suffice to
cope with the new needs previously described? These new concerns might
indeed appear rather abstract, and with no visible direct impact on machine

1As alternative we could make another prediction, using the current model, for the time
t+ k.

Knowledge Discovery from Data Streams 7

learning techniques. Quite to the contrary, however, even very basic operations
that are at the core of learning methods are challenged in the new setting. For
instance, consider the standard approach to cluster variables (columns in a
working-matrix). In a batch scenario, where all data are available and stored
in a working matrix, we can apply any clustering algorithm over the trans-
pose of the working matrix. In a scenario where data evolve over time, this is
not possible, because the transpose operator is a blocking operator (Barbará,
2002): the first output tuple is available only after processing all the input
tuples. Now, think of the computation of the entropy of a collection of data
when this collection comes as a data stream which is no longer finite, where
the domain (set of values) of the variables can be huge, and where the number
of classes of objects is not known a priori; or think on continuous maintenance
of the k-most frequent items in a retail data warehouse with three terabytes
of data, hundreds of gigabytes new sales records updated daily with millions
of different items.

Then, what becomes of statistical computations when the learner can only
afford one pass on each data piece because of time and memory constraints;
when the learner has to decide on the fly what is relevant and must be further
processed and what is redundant or not representative and could be discarded?
These are few examples of a clear need for new algorithmic approaches.

1.4 Data Mining and Data Streams

Solutions to these problems require new sampling and randomize tech-
niques, together with new approximate and incremental algorithms (Muthukr-
ishnan, 2005; Aggarwal, 2007; Gama and Gaber, 2007). Some data stream
models allow delete and update operators. For these models or in the pres-
ence of context change, the incremental property is not enough. Learning al-
gorithms need forgetting operators that discard outdated information: decre-
mental unlearning (Cauwenberghs and Poggio, 2000).

Another related conceptual framework is the block evolution presented by
Ramakrishnan and Gehrke (2003). In the block evolution model, a database
consists of a sequence of data blocks D1, D2, ... that arrives sequentially. For
evolving data, two classes of problems are of particular interest: model main-
tenance and change detection. The goal of model maintenance is to maintain a
data mining model under inserts and deletes of blocks of data. In this model,
older data is available if necessary. Change detection is related to quantify
the difference, between two sets of data and determine when the change has
statistical significance.

All around this book, we focus in algorithms and problems where random
access to data is not allowed or has high costs. Memory is assumed to be small
with respect to the dimension of data. Hulten and Domingos (2001) present

8 Knowledge Discovery from Data Streams

desirable properties for learning from high-speed, time-changing data streams:
incrementality, on-line learning, constant time to process each example, single
scan over the training set, take drift into account. In the problems we are
interested in, the assumption that the observations are generated at random
according to a stationary probability distribution is highly improbable. In
complex systems and for large time periods, we should expect changes in the
distribution of the examples. A natural approach for this incremental tasks is
the use of adaptive learning algorithms, incremental learning algorithms that
take into account concept drift.

Formally, we can define Adaptive Learning Algorithms as follows. Let
Tt = {~xi, yi : y = f(~x)} be a set of examples available at time t ∈ {1, 2, 3, . . . , i}.
A learning algorithm is adaptive if from the sequence of examples {..., Ej−1, Ej , . . .}
produce a sequence of Hypothesis {..., Hj−1, Hj , . . .}, where each hypothesis
Hi only depends on previous hypothesis Hi−1 and the example Ei.

An adaptive learning algorithm requires two operators:

• Increment: the example Ek is incorporated in the decision model;

• Decrement: the example Ek is forgotten from the decision model.

A main issue is that machine learning algorithms will have to enter the
world of limited rationality, e.g. rational decisions are not feasible in prac-
tice due to the finite computational resources available for making them (Si-
mon, 1997). Further than continuous flow of data produced in a dynamic
environment, the ideas we present here might be useful in several other situa-
tions. For example, the entire dataset is not available at the time the original
decision model is built, or the original dataset is too large to process and
does not fit in memory, and applications where the characteristics of the data
change over time.

In summary, knowledge discovery from data streams implies new require-
ments to be considered. The new constraints include:

• The algorithms will have to use limited computational resources, in terms
of computational power, memory, communication, and processing time;

• The algorithms will have only a limited direct access to data and may
have to communicate with other agents on limited bandwidth resources;

• In a community of smart devices geared to ease the life of users in real
time, answers will have to be ready in an anytime protocol;

• Data gathering and data processing might be distributed.

Chapter 2

Introduction to Data Streams

Nowadays, we are in presence of sources of data produced continuously at
high-speed. Examples include TCP/IP traffic, GPS data, mobiles calls, emails,
sensor networks, customer click streams, etc. These data sources are charac-
terized by continuously generating huge amounts of data from non stationary
distributions. Storage, maintenance, and querying data streams brought new
challenges in the databases and data mining communities. Database commu-
nity has developed Data Stream Management Systems (DSMS) for continuous
querying, compact data structures (sketches, and summaries), and sub-linear
algorithms for massive dataset analysis. In this chapter, we discuss relevant
issues and illustrative techniques developed in stream processing that might
be relevant for data stream mining.

2.1 Data Stream Models

Data streams can be seen as stochastic processes in which events occur
continuously and independently from each another. Querying data streams is
quite different from querying in the conventional relational model. A key idea
is that operating on the data stream model does not preclude the use of data
in conventional stored relations: data might be transient. What makes process-
ing data streams different from the conventional relational model? The main
differences are summarized in Table 2.1. Some relevant differences include:

1. The data elements in the stream arrive on-line.

2. The system has no control over the order in which data elements arrive,
either within a data stream or across data streams.

3. Data streams are potentially unbound in size.

4. Once an element from a data stream has been processed, it is discarded
or archived. It cannot be retrieved easily unless it is explicitly stored in
memory, which is small relative to the size of the data streams.

In the streaming model (Muthukrishnan, 2005) the input elements f1, f2, . . . , fj , . . .
arrive sequentially, item by item and describe an underlying function F .

9

10 Knowledge Discovery from Data Streams

Data Base Management Systems Data Streams Management Systems
Persistent relations Transient streams (and persistent relations)
One-time queries Continuous queries
Random access Sequential access
Access plan determined by query Unpredictable data characteristics
processor and physical DB design and arrival patterns

Table 2.1: Comparison between Database Management Systems and Data
Stream Management Systems.

Streaming models differ on how fi describe F . Regarding these models, we
can distinguish between:

1. Insert Only Model: once an element fi is seen, it can not be changed.

2. Insert-Delete Model: elements fi can be deleted or updated.

3. Additive Model: each fi is an increment to F [j] = F [j] + fi.

2.1.1 Research Issues in Data Streams Management Systems

From the point of view of a data stream management systems, several
research issues emerge. These issues have implications on data streams man-
agement systems, like:

• Approximate query processing techniques to evaluate queries that re-
quire unbounded amount of memory.

• Sliding window query processing both as an approximation technique
and as an option in the query language.

• Sampling to handle situations where the flow rate of the input stream
is faster than the query processor.

• The meaning and implementation of blocking operators (e.g. aggregation
and sorting) in the presence of unending streams.

This type of queries requires techniques for storing summaries or synopsis
information about previously seen data. There is a trade-off between the size
of summaries and the ability to provide precise answers.

2.1.2 An Illustrative Problem

A problem that clearly illustrates the issues in a streaming process, is the
problem of finding the maximum value (MAX) or the minimum value (MIN)
in a sliding window over a sequence of numbers. When we can store in memory
all the elements of the sliding window, the problem is trivial and we can find

Introduction to Data Streams 11

Traditional Stream
Number of passes Multiple Single
Processing Time Unlimited Restricted
Memory Usage Unlimited Restricted
Type of Result Accurate Approximate
Distributed? No Yes

Table 2.2: Differences between traditional and stream data query processing.

the exact solution. When the size of the sliding window is greater than the
available memory, there is no exact solution. For example, suppose that the
sequence is monotonically decreasing and the aggregation function is MAX.
Whatever the window size, the first element in the window is always the max-
imum. As the sliding window moves, the exact answer requires maintaining
all the elements in memory.

2.2 Basic Streaming Methods

Data streams are unbounded in length. However, this is not the only prob-
lem. The domain of the possible values of an attribute can also be very large.
A typical example is the domain of all pairs of IP addresses on the Inter-
net. It is so huge, that makes exact storage intractable, as it is impractical
to store all data to execute queries that reference past data. Some results on
tail inequalities provided by statistics are useful in these contexts. The basic
general bounds on the tail probability of a random variable (that is, the proba-
bility that a random variable deviates largely from its expectation) include the
Markov, Chebyshev and Chernoff inequalities (Motwani and Raghavan, 1997).
A summary of the differences between traditional and stream data processing
is presented in Table 2.2.

It is impractical to store all data to execute queries that reference past
data. This type of queries require techniques for storing summaries or synopsis
information about previously seen data. There is a trade-off between the size
of summaries and the ability to provide precise answers. We are faced with
problems whose solution requires O(N) space. Suppose we have restricted
memory. How can we solve these problems using less space than O(N)?

Algorithms that process data streams are typically sub-linear in time and
space, but they provide an answer which is in some sense approximate. There
are three main constraints to consider: the amount of memory used to store
information, the time to process each data element, and the time to answer
the query of interest. In general, we can identify two types of approximate
answers:

12 Knowledge Discovery from Data Streams

Figure 2.1: The Count-Min Sketch: The dimensions of the array depend on
the desired probability level (δ), and the admissible error (ε).

• ε Approximation: the answer is correct within some small fraction ε of
error.

• (ε, δ) Approximation: the answer is within 1 ± ε of the correct result,
with probability 1− δ.

The constants ε and δ have large influence on the space used. Typically, the
space is O(1

ε2 log(1/δ)).

2.2.1 Illustrative Examples

2.2.1.1 Counting the Number of Occurrence of the Elements in a
Stream.

Cormode and Muthukrishnan (2005) present the Count-Min Sketch, a
streaming algorithm for summarizing data streams. It has been used to ap-
proximately solve point queries, range queries, and inner product queries. Here
we present a simple point query estimate: Count the number of packets of each
IP from the set of IPs that cross a server in a network.

A Count-Min Sketch is an array of w × d in size (Figure 2.1). Given a
desired probability level (δ), and an admissible error (ε), the size of the data
structure is w = 2/ε and d = dlog(1/δ)e. Associated with each row there is
a hash function h(.) that uniformly maps a value x to a value in the interval
[1, . . . , w].

Each entry x in the stream, is mapped to one cell per row of the array of
counts. It uses d hash functions to map entries to [1, . . . , w]. When an update
c of item j arrives, c is added to each of these cells. c can be any value: positive
values for inserts, and negative values for deletes.

At any time we can answer point queries like: How many times we have
observed a particular IP? To answer such query, we determine the set of d
cells to which each of the d hash-functions map: CM [k, hk(IP)]. The es-

Introduction to Data Streams 13

timate is given by taking the minimum value among these cells: x̂[IP] =
min(CM [k, hk(IP)]). This estimate is always optimistic, that is x[j] ≤ x̂[j],
where x[j] is the true value. The interesting fact is that the estimate is upper
bounded by x̂[j] ≤ x[j] + ε× ||x||, with probability 1− δ.

2.2.1.2 Counting the Number of Distinct Values in a Stream

Another counting problem is the distinct values queries: Find the number
of distinct values in a stream of a random discrete variable.

Assume that the domain of the attribute is {0, 1, . . . ,M−1}. The problem
is trivial if we have space linear in M . Is there an approximate algorithm using
space log(M)?

The basic assumption is the existence of a hash function h(x) that maps
incoming values x ∈ [0, . . . , N − 1] uniformly across [0, . . . , 2L − 1], where
L = O(logN). Let lsb(y) denote the position of the least-significant 1-value
bit in the binary representation of y. A value x is mapped to lsb(h(x)). The al-
gorithm maintains a Hash Sketch, that is a bitmap vector of L bits, initialized
to zero. For each incoming value x, set the lsb(h(x)) to 1.

At each time-stamp t, let R denote the position of rightmost zero in the
bitmap. R is an indicator of log(d), where d denotes the number of distinct
values in the stream: d = 2R. In fact, Flajolet and Martin (1985) prove that,
for large enough streams, E[R] = log(φd), where φ = 0.7735, so d = 2R/φ.
This result is based on the uniformity of h(x): Prob[BITMAP [k] = 1] =
Prob[10k] = 1/2k+1. Assuming d distinct values, it is expected d/2 to map to
BITMAP[0], d/4 to map to BITMAP[1], and d/2r map to BITMAP[r-1].

In the following, we present an illustrative example of the Hash Sketch al-
gorithm application. Assume the hash function h(x) = 3x+1 mod 5. Suppose
that the first element of the stream is 1.

x = 1→ h(x) = 4→ 0100→ lsb(h(x)) = 2

and the BITMAP is set to:

5 4 3 2 1 0
0 0 0 1 0 0

Assume than the input stream is 1, 3, 2, 1, 2, 3, 4, 3, 1, 2, 3, 1, Applying
the hash function to the elements of the stream, we obtain h(Stream) =
4, 5, 2, 4, 2, 5, 3, 5, 4, 2, 5, 4, The position of the least-significant 1 bit is:
lsb(h(x)) = 2, 0, 1, 2, 1, 0, 0, 0, 2, 1, 0, 2, After processing the first 12 ele-
ments of the stream, the bitmap would look like:

5 4 3 2 1 0
0 0 0 1 1 1

In this case, R, the position of the rightmost 1, is 2 and d = 4.

14 Knowledge Discovery from Data Streams

2.2.2 Bounds of Random Variables

An estimator is a function of the observable sample data that is used to
estimate an unknown population parameter. We are particularly interested in
interval estimators that compute an interval for the true value of the param-
eter, associated with a confidence 1− δ. Two types of intervals are:

• Absolute approximation: X − ε ≤ µ ≤ X + ε, where ε is the absolute
error;

• Relative approximation: (1−δ)X ≤ µ ≤ (1+δ)X, where δ is the relative
error.

An interesting result from statistics is the Chebyshev Inequality.

Theorem 2.2.1 (Chebyshev) Let X be a random variable with standard
deviation σ, the probability that the outcome of X is no less than kσ away
from its mean is no more than 1/k2:

P (|X − µ| ≤ kσ) ≤ 1
k2

No more than 1/4 of the values are more than 2 standard deviations away
from the mean, no more than 1/9 are more than 3 standard deviations away,
no more than 1/25 are more than 5 standard deviations away, and so on.

Two results from the statistical theory useful in most of the cases are:

Theorem 2.2.2 (Chernoff Bound) Let X1, X2, . . . , Xn be independent ran-
dom variables from Bernoulli experiments. Assuming that P (Xi = 1) = pi.
Let Xs =

∑n
i=1Xi be a random variable with expected value µs =

∑
i=1 npi.

Then for any δ > 0:

P [Xs > (1 + δ)µs] ≤ (
eδ

(1 + δ)1+δ
)µs (2.1)

From this theorem, it is possible to derive the absolute error (Motwani and
Raghavan, 1997):

ε ≤
√

3µ

n
ln(2/δ) (2.2)

Theorem 2.2.3 (Hoeffding Bound) Let X1, X2, . . . , Xn be independent ran-
dom variables. Assume that each xi is bounded, that is P (Xi ∈ R = [ai, bi]) =
1. Let S = 1/n

∑n
i=1Xi, whose expected value is E[S]. Then, for any ε > 0,

P [S − E[S] > ε] ≤ e−
2n2ε2

R2 (2.3)

From this theorem, we can derive the absolute error (Motwani and Raghavan,
1997):

ε ≤
√
R2ln(2/δ)

2n
(2.4)

Introduction to Data Streams 15

Figure 2.2: Frequency distribution of two Poisson random variables with
λ = 4 and λ = 10.

Chernoff and Hoeffding bounds are independent from the distribution gen-
erating examples. They are applicable in all situations where observations are
independent and generated by a stationary distribution. Due to their gener-
ality they are conservative, that is, they require more observations than when
using distribution dependent bounds. Chernoff bound is multiplicative and its
error is expressed as a relative approximation. The Hoeffding bound is ad-
ditive and the error is absolute. While the Chernoff bound uses the sum of
events and require the expected value for the sum, the Hoeffding bound uses
the expected value and the number of observations.

2.2.3 Poisson Processes

A Poisson process is a stochastic process in which events occur continu-
ously and independently from each another. Examples that are well-modeled
as Poisson processes include the radioactive decay of atoms, telephone calls
arriving, page view requests to a website, items bought in a supermarket, etc.

A random variable x is said to be a Poisson random variable with param-
eter λ if x takes values 0, 1, 2, . . . ,∞ with:

pk = P (x = k) = e−λ
λk

k!

P (x = k) increases with k from 0 till k ≤ λ and falls off beyond λ. The mean
and variance are E(X) = V ar(X) = λ (see Figure 2.2).

Some interesting properties of Poisson processes are:

• The number of points ti in an interval (t1, t2) of length t = t2 − t1 is a
Poisson random variable with parameter λt;

16 Knowledge Discovery from Data Streams

• If the intervals (t1, t2) and (t3, t4) are non-overlapping, then the number
of points in these intervals are independent;

• If x1(t) and x2(t) represent two independent Poisson processes with
parameters λ1t and λ2t, their sum x1(t)+x2(t) is also a Poisson process
with parameter (λ1 + λ2)t.

2.2.4 Maintaining Simple Statistics from Data Streams

The recursive version of the sample mean is well known:

x̄i =
(i− 1)× x̄i−1 + xi

i
(2.5)

In fact, to incrementally compute the mean of a variable, we only need to
maintain in memory the number of observations (i) and the sum of the values
seen so far

∑
xi. Some simple mathematics allow to define an incremental

version of the standard deviation. In this case, we need to store 3 quantities:
i the number of data points;

∑
xi the sum of the i points; and

∑
x2
i , the sum

of the squares of the i data points. The equation to continuously compute σ
is:

σi =

√∑
x2
i −

(
∑
xi)2

i

i− 1
(2.6)

Another useful measure that can be recursively computed is the correlation
coefficient. Given two streams x and y, we need to maintain the sum of each
stream (

∑
xi and

∑
yi), the sum of the squared values (

∑
x2
i and

∑
y2
i), and

the sum of the crossproduct (
∑

(xi × yi)). The exact correlation is:

corr(a, b) =

∑
(xi × yi)−

∑
xi×

∑
yi

n√∑
x2
i −

∑
x2
i

n

√∑
y2
i −

∑
y2i
n

(2.7)

We have defined the sufficient statistics necessary to compute the mean,
standard deviation, and correlation on a time series. The main interest in
these formulas is that they allow us to maintain exact statistics (mean, stan-
dard deviation, and correlation) over a eventually infinite sequence of numbers
without storing in memory all the numbers.

2.2.5 Sliding Windows

Most of the time, we are not interested in computing statistics over all
the past, but only over the recent past. The simplest situation is the sliding
windows of fixed size. These types of windows are similar to first in, first
out data structures. Whenever an element j is observed and inserted into
the window, another element j − w, where w represents the window size, is
forgotten.

Introduction to Data Streams 17

Figure 2.3: Sequence based windows.

Figure 2.4: Tilted Time Windows. The top figure presents a natural tilted
time window, the figure in the bottom presents the logarithm tilted windows.

Several window models have been presented in the literature. Babcock,
Datar, and Motwani (2002) defines two basic types of sliding windows:

• Sequence based. The size of the window is defined in terms of the
number of observations. Two different models are sliding windows of
size j and landmark windows;

• Timestamp based. The size of the window is defined in terms of du-
ration. A timestamp window of size t consists of all elements whose
timestamp is within a time interval t of the current time period.

Computing statistics over sliding windows requires storing all elements
inside the window in memory. Suppose we want to maintain the standard
deviation of the values of a data stream using only the last 100 examples, that
is in a fixed time window of dimension 100. After seeing observation 1000, the
observations inside the time window are:

x901, x902, x903, . . . , x999, x1000

Sufficient statistics after seeing the 1000th observation:

18 Knowledge Discovery from Data Streams

A =
∑1000
i=901 xi; B=

∑1000
i=901 x

2
i

Whenever the 1001th value is observed, the time window moves 1 obser-
vation and the updated sufficient statistics are: A = A + x1001 − x901 and
B = B + x2

1001 − x2
901.

Note that we need to store in memory the observations inside the window.
Due to the necessity to forget old observations, we need to maintain in memory
all the observations inside the window. The same problem applies for time
windows whose size changes with time. In the following sections we address
the problem of maintaining approximate statistics over sliding windows in a
stream, without storing in memory all the elements inside the window.

2.2.5.1 Computing Statistics over Sliding Windows: The ADWIN al-
gorithm

The ADWIN (ADaptive sliding WINdow) (Bifet and Gavaldà, 2006, 2007)
is a change detector and estimator algorithm using an adaptive size sliding
window. It solves in a well-specified way the problem of tracking the average of
a stream of bits or real-valued numbers. ADWIN keeps a variable-length window
of recently seen items, with the property that the window has the maximal
length statistically consistent with the hypothesis there has been no change in
the average value inside the window.

More precisely, an older fragment of the window is dropped if and only if
there is enough evidence that its average value differs from that of the rest of
the window. This has two consequences: one, which change reliably declared
whenever the window shrinks; and two, that at any time the average over the
existing window can be reliably taken as an estimation of the current average
in the stream (barring a very small or very recent change that is still not
statistically visible).

The inputs to ADWIN are a confidence value δ ∈ (0, 1) and a (possibly infi-
nite) sequence of real values x1, x2, x3, . . . , xt, . . . The value of xt is available
only at time t. Each xt is generated according to some distribution Dt, in-
dependently for every t. We denote with µt the expected value of xt when it
is drawn according to Dt. We assume that xt is always in [0, 1]; by an easy
rescaling, we can handle any case in which we know an interval [a, b] such that
a ≤ xt ≤ b with probability 1. Nothing else is known about the sequence of
distributions Dt; in particular, µt is unknown for all t.

The algorithm ADWIN uses a sliding window W with the most recently
read xi. Let µ̂W denote the (known) average of the elements in W , and µW
the (unknown) average of µt for t ∈W . We use |W | to denote the length of a
(sub)window W .

The algorithm ADWIN is presented in Figure 1. The idea behind ADWIN

method is simple: whenever two ’large enough’ subwindows of W exhibit ’dis-
tinct enough’ averages, one can conclude that the corresponding expected
values are different, and the older portion of the window is dropped. The
meaning of ’large enough’ and ’distinct enough’ can be made precise again

Introduction to Data Streams 19

by using the Hoeffding bound. The test eventually boils down to whether the
average of the two subwindows is larger than a variable value εcut computed
as follows:

m :=
2

1/|W0|+ 1/|W1|

εcut :=

√
1

2m
· ln 4|W |

δ
.

where m is the harmonic mean of |W0| and |W1|.

Algorithm 1: The ADWIN Algorithm.

begin
Initialize Window W ;
foreach (t) > 0 do

W ←W ∪ {xt} (i.e., add xt to the head of W);
repeat

Drop elements from the tail of W
until |µ̂W0

− µ̂W1
| < εcut holds for every split of W into

W = W0 ·W1;

Output µ̂W

The main technical result in Bifet and Gavaldà (2006, 2007) about the
performance of ADWIN is the following theorem, that provides bounds on the
rate of false positives and false negatives for ADWIN:

Theorem 2.2.4 With εcut defined as above, at every time step we have:

1. (False positive rate bound). If µt has remained constant within W , the
probability that ADWIN shrinks the window at this step is at most δ;

2. (False negative rate bound). Suppose that for some partition of W in
two parts W0W1 (where W1 contains the most recent items) we have
|µW0 − µW1 | > 2εcut. Then with probability 1 − δ ADWIN shrinks W to
W1, or shorter.

This theorem justifies us in using ADWIN in two ways:

• As a change detector, since ADWIN shrinks its window if and only if there
has been a significant change in recent times (with high probability);

• As an estimator for the current average of the sequence it is reading since,
with high probability, older parts of the window with a significantly
different average are automatically dropped.

20 Knowledge Discovery from Data Streams

Figure 2.5: Output of algorithm ADWIN for different change rates: (a) Output
of algorithm ADWIN with abrupt change; (b) Output of algorithm ADWIN with
slow gradual changes.

ADWIN is parameter and assumption free in the sense that it automatically
detects and adapts to the current rate of change. Its only parameter is a
confidence bound δ, indicating how confident we want to be in the algorithm’s
output, inherent to all algorithms dealing with random processes.

Also important, ADWIN does not maintain the window explicitly, but com-
presses it using a variant of the exponential histogram technique in Datar et al.
(2002). This means that it keeps a window of length W using only O(logW)
memory and O(logW) processing time per item, rather than the O(W) one
expects from a näıve implementation.

Let us consider how ADWIN behaves in two special cases: sudden (but in-
frequent) changes, and slow gradual changes. Suppose that for a long time
µt has remained fixed at a value µ, and that it suddenly jumps to a value
µ′ = µ+ ε. By part (2) of Theorem 2.2.4 one can derive that the window will
start shrinking after O(µ ln(1/δ)/ε2) steps, and in fact will be shrunk to the
point where only O(µ ln(1/δ)/ε2) examples prior to the change are left. From
then on, if no further changes occur, no more examples will be dropped so the
window will expand unboundely.

In case of a gradual change with slope α following a long stationary period
at µ, observe that the average of W1 after n1 steps is µ+ αn1/2; we have:

ε = αn1/2 ≥ O(
√
µ ln(1/δ)/n1)

iff n1 = O(µ ln(1/δ)/α2)1/3. So n1 steps after the change the window will
start shrinking, and will remain at approximately size n1 from then on. A
dependence on α of the form O(α−2/3) may seem odd at first, but one can
show that this window length is actually optimal in this setting, even if α is
known: it minimizes the sum of variance error (due to short window) and error
due to out-of-date data (due to long windows in the presence of change). Thus,
in this setting, ADWIN provably adjusts automatically the window setting to

Introduction to Data Streams 21

its optimal value, up to multiplicative constants.
Figure 2.5 illustrate these behaviors. In Figure 2.5(a), a sudden change

from µt−1 = 0.8 to µt = 0.4 occurs, at t = 1000. One can see that the window
size grows linearly up to t = 1000, that ADWIN cuts the window severely 10
steps later (at t = 1010), and that the window expands again linearly after
time t = 1010. In Figure 2.5(b), µt gradually descends from 0.8 to 0.2 in
the range t ∈ [1000, 2000]. In this case, ADWIN cuts the window sharply at t
around 1200 (i.e., 200 steps after the slope starts), keeps the window length
bounded (with some random fluctuations) while the slope lasts, and starts
growing it linearly again after that. As predicted by theory, detecting the
change is harder in slopes than in abrupt changes.

2.2.6 Data Synopsis

With new data constantly arriving even as old data is being processed,
the amount of computation time per data element must be low. Furthermore,
since we are limited to bounded amount of memory, it may not be possible to
produce exact answers. High-quality approximate answers can be an accept-
able solution. Two types of techniques can be used: data reduction and sliding
windows. In both cases, they must use data structures that can be maintained
incrementally. The most common used techniques for data reduction involve:
sampling, synopsis and histograms, and wavelets.

2.2.6.1 Sampling

Sampling is a common practice for selecting a subset of data to be ana-
lyzed. Instead of dealing with an entire data stream, we select instances at
periodic intervals. Sampling is used to compute statistics (expected values) of
the stream. While sampling methods reduce the amount of data to process,
and, by consequence, the computational costs, they can also be a source of
errors. The main problem is to obtain a representative sample, a subset of
data that has approximately the same properties of the original data.

How to obtain an unbiased sampling of the data? In statistics, most tech-
niques require to know the length of the stream. For data streams, we need to
modify these techniques. The key problems are the sample size and sampling
method.

The simplest form of sampling is random sampling, where each element has
equal probability of being selected. The reservoir sampling technique (Vitter,
1985) is the classic algorithm to maintain an online random sample. The basic
idea consists of maintaining a sample of size k, called the reservoir. As the
stream flows, every new element has a probability k/n of replacing an old
element in the reservoir.

Analyze the simplest case: sample size k = 1. The probability that the ith
item is the sample from a stream length n:

1
2 ×

2
3 . . .×

i
i+1 × . . .×

n−2
n−1 ×

n−1
n = 1/n

22 Knowledge Discovery from Data Streams

Algorithm 2: The Reservoir Sampling Algorithm.

input: S: a stream of values
k: size of the reservoir

begin
/* Creates uniform sample of fixed size k */

Insert the first k elements into the reservoir;
foreach v ∈ S do

Let i be the position of v;
Generate a random integer M in the range 1, . . . , i ;
if M ≤ k then

Insert v in the reservoir;
Delete an instance from the reservoir at random.

A usual improvement consists of determining the number of elements to
skip before the next to be added to the reservoir, instead of flipping a coin for
each element. Extensions to maintain a sample of size k over a count-based
sliding window of the n most recent data items from data streams appear in
Babcock et al. (2002).

Min-Wise Sampling. Another sampling approach is the Min-Wise Sam-
pling strategy (Broder et al., 2000). For each element of the stream, pick a
random number in the range [0, 1], and retain the elements with the small-
est random number seen so far. It is straightforward, that all elements have
the same probability of being selected, and therefore the sample is uniform.
The advantage of this procedure, is its applicability in distributed streams, by
merging results and picking the retained elements with smaller numbers.

Load Shedding. Sampling is also useful to slow down data. Load shedding
techniques has been studied to adjust the data transmission rate controlling
the congestion of stream applications in computer networks (Tatbul et al.,
2003). These techniques are used in the context of continuous queries. When-
ever the arrival rate of the stream might overload the system, some fractions
of data are discarded. Load shedding techniques focus when to discard data,
if tuples might be dropped at any point of their processing states, how much
load to shed based on measures of quality of service.

Sampling is useful to slow-down data, but might be problematic in moni-
toring problems, because it reduces the probability of detecting changes and
anomalies.

2.2.6.2 Synopsis and Histograms

Synopsis and Histograms are summarization techniques that can be used
to approximate the frequency distribution of element values in a data stream.
They are commonly used to capture attribute value distribution statistics
for query optimizers (like range queries). A histogram is defined by a set of

Introduction to Data Streams 23

non-overlapping intervals. Each interval is defined by the boundaries and a
frequency count. The reference technique is the V-Optimal histogram (Guha
et al., 2004). It defines intervals that minimize the frequency variance within
each interval. Sketches are special case of synopsis, which provide probabilistic
guarantees on the quality of the approximate answer (e.g. the answer is 10±
2 with probability 95%). Sketches have been used to solve the k-hot items
(Cormode and Muthukrishnan, 2003), dicussed in Section 7.2.

2.2.6.3 Wavelets

Wavelet transforms are mathematical techniques, in which signals are rep-
resented as a weighted sum of simpler, fixed building waveforms at different
scales and positions. Wavelets express a times series in terms of translation
and scaling operations over a simple function called mother wavelet. While
scaling compresses or stretches the mother wavelet, translation shifts it along
the time axis.

Wavelets attempt to capture trends in numerical functions. Wavelets de-
compose a signal into a set of coefficients. The decomposition does not preclude
information loss, because it is possible to reconstruct the signal from the full
set of coefficients. Nevertheless, it is possible to eliminate small coefficients
from the wavelet transform introducing small errors when reconstructing the
original signal. The reduced set of coefficients are of great interest for stream-
ing algorithms.

A wavelet transform decomposes a signal into several groups of coefficients.
Different coefficients contain information about characteristics of the signal at
different scales. Coefficients at coarse scale capture global trends of the signal,
while coefficients at fine scales capture details and local characteristics.

The simplest and most common transformation is the Haar wavelet (Jaw-
erth and Sweldens, 1994). Its based on the multiresolution analysis principle,
where the space is divided into a sequence of nested subspaces. Any sequence
(x0, x1, . . . , x2n, x2n+1) of even length is transformed into a sequence of two-
component-vectors ((s0, d0) , . . . , (sn, dn)). The process continues, by separat-
ing the sequences s and d, and recursively transforming the sequence s. One
stage of the Fast Haar-Wavelet Transform consists of:[

si
di

]
= 1/2

[
1 1
1 −1

]
×
[

xi
xi+1

]
As an illustrative example, consider the sequence f = (2, 5, 8, 9, 7, 4,−1, 1).

Applying the Haar transform:

• Step 1
s1 = (2 + 5, 8 + 9, 7 + 4,−1 + 1)/2, d1 = (2− 5, 8− 9, 7− 4,−1− 1)/2
s1 = (7, 17, 11, 0)/2, d1 = {−1.5,−.5, 1.5,−1}

• Step 2
s2 = ((7 + 17)/2, (11 + 0)/2)/2, d2 = ((7− 17)/2, (11− 0)/2)/2
s2 = (24/2, 11/2)/2, d2 = {−2.5,−2.75}

24 Knowledge Discovery from Data Streams

• Step 3
s3 = ((24 + 11)/4)/2, d3 = {((24− 11)/4)/2}
s3 = 4.375, d3 = {1.625}

The sequence {4.375, 1.625,−2.5,−2.75,−1.5,−.5, 1.5,−1} are the coefficients
of the expansion. The process consists of adding/subtracting pairs of numbers,
divided by the normalization factor.

Wavelet analysis is popular in several streaming applications, because most
signals can be represented using a small set of coefficients. Matias et al. (1998)
present an efficient algorithm based on multi-resolution wavelet decomposition
for building histograms with application to databases problems, like selectiv-
ity estimation. In the same research line, Chakrabarti et al. (2001) propose
the use of wavelet-coefficient synopses as a general method to provide approx-
imate answers to queries. The approach uses multi-dimensional wavelets syn-
opsis from relational tables. Guha and Harb (2005) propose one-pass wavelet
construction streaming algorithms with provable error guarantees for minimiz-
ing a variety of error-measures including all weighted and relative lp norms.
Marascu and Masseglia (2009) present an outlier detection method using the
two most significant coefficients of Haar wavelets.

2.2.6.4 Discrete Fourier Transform

The Discrete Fourier transform (DFT) (Brigham, 1988) of a time sequence
x1, x2, . . . , xw is a sequence DFT (x) = X = X1, X2, . . . , Xw−1 of complex
numbers given by

XF =
1√
w

w−1∑
i=0

xie
j2πFi/w, where j =

√
−1.

The inverse Fourier transform of X is given by:

xi =
1√
w

w−1∑
F=0

XF e
j2πFi/w.

A DFT decomposes a sequence of values into components of different fre-
quencies. An interesting property is that DFT preserves the Euclidean distance
between any two sequences. Since for most time series the first few coefficients
contains most of the energy we would expect that those coefficients retain the
raw shape of the sequence.

There are several efficient and fast Fourier transform algorithms (FFT).
Their complexity is O(n× log(n)) while to compute the discrete Fourier trans-
form from the definition is O(N2) (Brigham, 1988).

Introduction to Data Streams 25

2.3 Illustrative Applications

2.3.1 A datawarehouse problem: Hot-Lists

Assume we have a retail data warehouse. The actual size of the data ware-
house is 3 TB of data, and hundreds of gigabytes of new sales records are
updated daily. The order of magnitude of the different items is millions.

The hot-list problem consists of identifying the most (say 20) popular
items. Moreover, we have restricted memory: we can have a memory of hun-
dreds of bytes only. The goal is to continuously maintain a list of the top-K
most frequent elements in a stream. Here, the goal is the rank of the items.
The absolute value of counts is not relevant, but their relative position. A
first and trivial approach consists of maintaining a count for each element in
the alphabet and when query return the k first elements in the sorted list of
counts. This is an exact and efficient solution for small alphabets. For large
alphabets it is very space (and time) inefficient, there will be a large number
of zero counts.

Misra and Gries (1982) present a simple algorithm (Algorithm 3) that
maintain partial information of interest by monitoring only a small subset
m of elements. We should note that m > k but m � N where N is the
cardinality of the alphabet. When a new element i arrives, if it is in the set of
monitored elements, increment the appropriate counter; otherwise, if there is
some counter with count zero, it is allocated to the new item, and the counter
set to 1, otherwise decrement all the counters.

Later, Metwally et al. (2005) present the Space-saving algorithm (Algo-
rithm 4), an interesting variant of the Misra and Gries (1982) algorithm. When
a new element i arrives, if it is in the set of monitored elements, increment the
appropriate counter; otherwise remove the element with less hits, and include
i with a counter initialized with the counts of the removed element plus one.

Both algorithms are efficient for very large alphabets with skewed distribu-
tions. The advantage of the Space-saving comes up if the popular elements
evolve over time, because it tends to give more importance to recent observa-
tions. The elements that are growing more popular will gradually be pushed
to the top of the list. Both algorithms continuously return a list of the top-k
elements. This list might be only an approximate solution. Metwally et al.
(2005) report that, even if it is not possible to guarantee top-k elements, the
algorithm can guarantee top-k′ elements, with k′ ≈ k. If we denote by ci the
count associated with the most recent monitored element, any element i is
guaranteed to be among the top-m elements if its guaranteed number of hits,
counti − ci, exceeds countm+1. Nevertheless, the counts maintained by both
are not liable, because only the rank of elements is of interest.

26 Knowledge Discovery from Data Streams

Algorithm 3: The Frequent Algorithm.

input: S: A Sequence of Examples
begin

foreach example (e) ∈ S do
if e is monitored then

Increment Counte;

else
if there is a Countj == 0 then

Replace element j by e and initialize Counte = 1;

else
Subtract 1 to each Counti;

Algorithm 4: The Space-saving Algorithm.

input: S: A Sequence of Examples
begin

foreach example (e) ∈ S do
if e is monitored then

Increment Counte;

else
Let em be the element with least hits min;
Replace em with e with counte = min+ 1;

2.3.2 Computing the Entropy in a Stream

Entropy measures the randomness of data. A number of recent results in
the networking community have used entropy in analyzing IP network traffic
at the packet level (Chakrabarti et al., 2006, 2007).

Wagner and Plattner (2005) present a very nice description of the connec-
tions between randomness of traffic sequences and propagation of malicious
events. In that paper, the authors wrote:

When a fast scanning worm propagates through the Internet, the
propagation activity looks like this: a smaller number of infected
hosts tries to find other hosts to be infected by attempting to con-
nect to them in a random fashion. This scanning activity is differ-
ent from normal Internet traffic. The connection between entropy
and worm propagation is that worm traffic is more uniform or
structured than normal traffic in some respects and a more ran-
dom in others. The change in IP address characteristics seen on
a flow level (i.e. when packets belonging to a TCP connection or
UDP data stream with same source/destination IP address and
port numbers are reported aggregated into one flow) is relatively

Introduction to Data Streams 27

Algorithm 5: Basic Estimator for the Entropy Norm.

input: S: A Sequence of Examples
begin

Randomly sample a position j in the stream;
Let r be the count how many times aj appears subsequently;

Output X = r
m × log(mr)− (r−1)

m × log(m
r−1);

intuitive: infected, scanning hosts try to connect to a lot of other
hosts. If these flows grow to be a significant part of the set of flows
seen in total, the source IP addresses of the scanning hosts will
be seen in many flows and since they are relatively few hosts, the
source IP address fields will contain less entropy per address seen
than normal traffic. On the other hand the target IP addresses seen
in flows will be much more random than in normal traffic.

The authors developed an entropy-based approach, that determines and re-
ports entropy contents of traffic parameters such as IP addresses. Changes in
the entropy content indicate a massive network event.

The problem we address here is how to compute entropy in high-speed
streams with very large alphabets. Consider a large sequence of characters
S = 〈a1, a2, a3, . . . , am〉 where each aj ∈ {1, . . . n}. Let fi be the frequency of
i in the sequence. The goal is to compute the empirical entropy:

H(S) = −
∑
i

fi
m
log(

fi
m

) = −
∑
i

pilog(pi)

.
This is an easy problem, if we have O(n) space: compute each fi exactly.

More challenging is if n is huge, m is huge, and we have only one pass over
the input. The challenge is approximately compute H(S) in space sublinear
in m, the stream length, and n, the alphabet size. We do not require an exact
answer. A (ε, δ) approximation, that is, an answer that is (1± ε)×H(S) with
probability 1− δ is enough.

Chakrabarti et al. (2007) proposed a method to solve this problem. To un-
derstand their proposal, consider the Algorithm described in 5. The expected
value of X, when computed from large substrings, is an unbiased estimator
for the entropy: E[X] = H(S). This estimate is not very reliable, but it can
be improved by taking the average of many repetitions using different ran-
dom samples. Nevertheless, the quality of this estimate is problematic for low
entropy streams.

To overcome this difficulty, Chakrabarti et al. (2007) propose another ap-
proach. The authors observe that low entropy streams occurs when one of the
tokens is much more frequent than all the others. They propose to decompose
entropy as:

H(S) = −pa × log2(pa) + (1− pa)×H(S′) (2.8)

28 Knowledge Discovery from Data Streams

where pa is the frequency of the most frequent element in S and S′ is the
substream of S after removing a. In low entropy streams, a is the boring guy.

How can we find pa and H(S′) online in one pass? Remember that H(S′)
can be computed, if we know S′, using the simple estimator described in
Algorithm 5. The problem is that a, the boring guy (if there is one), is not
known in advance.

Based on the Min-Wise sampling strategy (described in Section 2.2.6.1),
Chakrabarti et al. (2007) propose the algorithm presented in Algorithm 6. The
main idea is to keep two samples, and two sets of statistics: (token1, tag1, freq1)
and (token2, tag2, freq2) to compute the estimator. Both sets contain a token,
a random number in the esprit of Min-Wise sampling (see Section 2.2.6.1),
and the frequency of the token. These statistics are such that tag1 < tag2 and
token1 will be sample from S, token2 will be sample from S′ = S\{token1}.

Algorithm 6: The Maintain Samples Algorithm.

input: S: A Sequence of Examples
begin

foreach example (e) ∈ S do
Let x = random();
if e == token1 then

if x < tag1 then
tag1 = x; token1 = e; freq1 = 1;

else
freq1 = freq1 + 1;

else
if e == token2 then

freq2 = freq2 + 1;

if x < tag1 then
tag2 = tag1; token2 = token1; freq2 = freq1; tag1 = x;
token1 = e; freq1 = 1;

else
if x < tag2 then

tag2 = x; token2 = e; freq2 = 1;

2.3.3 Monitoring Correlations Between Data Streams

Zhu and Shasha (2002) present the StatStream system for monitoring tens
of thousands of high-speed time-series data streams in an online fashion and
making decisions based on them. In addition to single stream statistics such as
average and standard deviation, over sliding windows, StatStream also finds
high correlations among all pairs of streams for a given period of time.

Introduction to Data Streams 29

Figure 2.6: The three aggregation levels in StatStream.

StatStream implement efficient methods for solving these problems based
on Discrete Fourier Transforms and a three level time interval hierarchy. The
time intervals considered are:

• Data points - the smallest unit of time over which the system collects
data;

• Basic windows - a consecutive subsequence of time points over which
the system maintains a digest incrementally;

• Sliding window - a user-defined subsequence of basic windows over
which the user wants statistics.

Figure 2.6 shows the relation between the three levels. Let w be the size
of the sliding window. Suppose w = kb, where b is the length of a basic
window and k is the number of basic windows inside the sliding window.
Let S[0], S[1], . . . , S[k − 1] denote the sequence of basic windows inside the
sliding window. The elements of a basic window S[i] = s[(t − w) + ib + 1 :
(t−w) + (i+ 1)b. The sliding window moves over basic windows, when a new
basic window S[k] is full filled in, S[0] expires.
Simple Statistics. Moving averages always involve w points. For each basic
window StatStream maintain the digest

∑
(S[i]). When the new basic win-

dow S[k] is available and the sliding window moves, the sum is updated as:∑
new(s) =

∑
old(s) +

∑
S[k] −

∑
S[0]. Maximum, minimum, and standard

deviation are computed in a similar way.
Monitoring Correlation.

30 Knowledge Discovery from Data Streams

A useful normalization of a series x1, . . . , xw over a sliding window of size w
is: x̂i = xi−x̄

σx
where σx =

√∑w
i=1(xi − x̄)2. The correlation coefficient of two

time series can be reduced to the Euclidean distance between their normalized
series:

corr(x, y) = 1− 1

2
d2(x̂, ŷ)

where d(x̂, ŷ) is the Euclidean distance between x̂ and ŷ. The proof is based
on
∑w
i=1 x̂

2
i = 1 and corr(x, y) =

∑w
i=1 x̂i · ŷi.

By reducing the correlation coefficient to the Euclidean distance, we need
to identify the sequences with correlation coefficients higher than a user speci-
fied threshold. Let the DFT (see Section 2.2.6.4) of the normalized form of two
time series x and y be X̂ and Ŷ respectively. Let dn(X̂,Ŷ) be the Euclidean
distance between series X̂1, X̂2, . . . , X̂n and Ŷ1, Ŷ2, . . . , Ŷn. Then

corr(x, y) ≥ 1− ε2 ⇒ dn(X̂, Ŷ) ≤ ε

where n, (n << w) refers to the number of DFT coefficients retained. From
this result, we can examine the correlations of only those stream pairs for
which dn(X̂, Ŷ) ≤ ε holds. We will get a superset of highly correlated pairs
and there will be no false negatives.

The technique can be extended to report stream pairs of high negative
correlation:

corr(x, y) ≤ −1 + ε2 ⇒ dn(−X̂, Ŷ) ≤ ε
Incremental Maintenance of DFT Coefficients. The DFT coefficients
X̂ of the normalized sequence can be computed from the DFT coefficients X
of the original sequence: X̂0 = 0 and X̂i = Xi

σx
.

Let Xold
m be the m-th DFT coefficient of the series in sliding window

x0, x1, . . . , xw−1 and Xnew
m be that coefficient of the series x1, x2, . . . , xw,

Xnew
m = e

j2πm
w (Xold

m + xw−x0√
w

).

This can be extended to an update on the basic windows when the slid-
ing window moves. Let Xold

m be the m-th DFT coefficient of the series in
sliding window x0, x1, . . . , xw−1 and Xnew

m be that coefficient of the series
xb, xb+1, . . . , xw, xw+1, . . . , xw+b−1.

Xnew
m = e

j2πmb
w Xold

m +
1√
w

(

b−1∑
i=0

e
j2πm(b−i)

w xw+i −
b−1∑
i=0

e
j2πm(b−i)

w xi).

To update the DFT coefficients incrementally, StatStream should keep
the following n summaries for the basic windows:

b−1∑
i=0

e
j2πm(b−i)

w xi,m = 1, . . . , n

Reducing the space of correlated streams. The feature space of the DFT

coefficients on normalized sequences is bounded: |X̂i| ≤
√

2
2 , i = 1, . . . , n. By

Introduction to Data Streams 31

using DFT on normalized sequences, we map the original sequences into a
bounded feature space. StatStream superimpose a n̂ grid in the DFT feature
space by partition that space into cells with the same size and shape. Each
stream is mapped to a cell based on its first n̂ normalized coefficients. Suppose
a stream x is hashed to cell (c1, c2, . . . , cn̂). To report the streams whose corre-
lation coefficients with x is less to the threshold 1− ε2 only streams hashed to
cells adjacent to cell (c1, c2, . . . , cn̂) need to be examined. High negative cor-
relations with x must be hashed to cells adjacent to cell (−c1,−c2, . . . ,−cn̂).
After hashing the streams to cells, the number of stream pairs to be examined
is greatly reduced. We can compute their Euclidean distance and correlation
based on the first n DFT coefficients.

2.3.4 Monitoring Threshold Functions Over Distributed Data
Streams

The problem consists of monitoring data produced in a sensor network.
The sensors monitor the concentration of air pollutants. Each sensor maintains
a data vector with measurements of the concentration of various pollutants
(CO2, SO2, O3, etc.). A function on the average of the data vectors determines
the Air Quality Index (AQI). The goal consists of trigger an alert whenever
the AQI exceeds a given threshold.

The problem involves computing a function over the data collected in all
sensors. A trivial solution consists of sending data to a central node. This
might be problematic due to huge volume of data collected in each sensor and
the large number of sensors.

Sharfman, Schuster, and Keren (2007) present a distributed algorithm to
solve this type of problems. They present a geometric interpretation of the
problem. The figures 2.7 illustrate the vector space. The gray dots corresponds
to the sensor’s measurements, and the black dot to the aggregation vector.
The gray region corresponds to the alarm region. The goal is detect whenever
the cross is inside the gray region.

The method is based on local computations with reduced communications
between sensors. The base idea is that the aggregated function is always in-
side the convex-hull of the vectors space (see Figure 2.8 A and B). Suppose
that all points share a reference point. Each sensor can compute a sphere
with diameter the actual measurement of the sensor and the reference point.
If all spheres are in the normal region, the aggregated value is also in the
normal region. This holds, because the convex-hull of all vertex is bounded by
the union of the spheres (see Figure 2.8 C and D). In the case that a sphere
is not monochromatic, the node triggers the re-calculation of the aggregated
function. The algorithm only uses local constraints! Mostly only local compu-
tations are required and this minimizes the communications between sensors.

32 Knowledge Discovery from Data Streams

Figure 2.7: The vector space: The gray dots (A,B,C) corresponds to the
sensor’s measurements; and the black dot (D) to the aggregation vector. The
gray region corresponds to the alarm region. The center figure illustrates a
normal air condition. The right figure presents an alarm condition, even none
of the sensors are inside the alarm region.

A B

C D

Figure 2.8: The bounding theorem: the convex-hull of sensors is bounded by
the union of spheres. Sensors only need to communicate their measurements
when the spheres are non monochromatic.

Introduction to Data Streams 33

Algorithm 7: The Monitoring Threshold Functions Algorithm (sensor
node).

begin
Broadcast Initial position ;
Compute an initial reference point ;
foreach new measurement do

Compute the sphere and check its color;
if sphere non monochromatic then

Broadcast the actual measurement;
Recompute a new reference point;

2.4 Notes

The research on Data Stream Management Systems started in the database
community, to solve problems like continuous queries in transient data. The
most relevant projects include: The Stanford StREam DatA Manager (Stan-
ford University) with focus on data management and query processing in the
presence of multiple, continuous, rapid, time-varying data streams. At MIT,
the Aurora project was developed to build a single infrastructure that can
efficiently and seamlessly meet the demanding requirements of stream-based
applications. Focusing on real-time data processing issues, such as quality of
serviçe (QoS)- and memory-aware operator scheduling, semantic load shed-
ding for dealing with transient spikes at incoming data rates. Two other well
known systems include Telegraph developed at University of Berkeley, and
NiagaraCQ developed at University of Wisconsin. We must also refer to the
Hancock project, developed at AT&T Research labs, where a C-based domain-
specific language, was designed to make it easy to read, write, and maintain
programs that manipulate huge amounts of data.

34 Knowledge Discovery from Data Streams

Chapter 3

Change Detection

Most of the machine learning algorithms assume that examples are generated
at random, according to some stationary probability distribution. In this chap-
ter, we study the problem of learning when the distribution that generates the
examples changes over time. Embedding change detection in the learning pro-
cess is one of the most challenging problems when learning from data streams.
We review the Machine Learning literature for learning in the presence of drift,
discuss the major issues to detect and adapt decision problems when learning
from streams with unknown dynamics, and present illustrative algorithms to
detect changes in the distribution of the training examples.

3.1 Introduction

In many applications, learning algorithms acts in dynamic environments
where the data flows continuously. If the process is not strictly stationary (as
most of real world applications), the target concept could change over time.
Nevertheless, most of the work in Machine Learning assume that training
examples are generated at random according to some stationary probability
distribution. Basseville and Nikiforov (1993) present several examples of real
problems where change detection is relevant. These include user modeling,
monitoring in bio-medicine and industrial processes, fault detection and diag-
nosis, safety of complex systems, etc.

The Probably Approximately Correct - PAC learning (Valiant, 1984) frame-
work assumes that examples are independent and randomly generated ac-
cording to some probability distribution D. In this context, some model-class
learning algorithms (like Decision Trees, Neural Networks, some variants of k-
Nearest Neighbors, etc) could generate hypothesis that converge to the Bayes-
error in the limit, that is, when the number of training examples increases to
infinite. All that is required is that D must be stationary, the distribution
must not change over time.

Our environment is naturally dynamic, constantly changing in time. Huge
amounts of data are being continuously generated by various dynamic systems
or applications. Real-time surveillance systems, telecommunication systems,

35

36 Knowledge Discovery from Data Streams

sensor networks and other dynamic environments are such examples. Learning
algorithms that model the underlying processes must be able to track this
behavior and adapt the decision models accordingly.

3.2 Tracking Drifting Concepts

Concept drift means that the concept about which data is being collected
may shift from time to time, each time after some minimum permanence.
Changes occur over time. The evidence of drift in a concept is reflected in
some way in the training examples. Old observations, that reflect the behavior
of nature in the past, become irrelevant to the current state of the phenomena
under observation and the learning agent must forget that information.

Suppose a supervised learning problem, where the learning algorithm ob-
serve sequences of pairs (~xi, yi) where yi ∈ {C1, C2, ..., Ck}. At each time
stamp t the learning algorithm outputs a class prediction ŷt for the given
feature vector ~xt. Assuming that examples are independent and generated at
random by a stationary distribution D, some model class algorithms (e.g. de-
cision trees, neural networks, etc) can approximate D with arbitrary accuracy
(bounded by the Bayes error) whenever the number of examples increases to
infinite.

Suppose now the case where D is not stationary. The data stream consists
of sequences of examples ei = (~xi, yi). Suppose further that from time to time,
the distribution that is generating the examples change. The data stream can
be seen as sequences < S1, S2, ..., Sk, ... > where each element Si is a set of ex-
amples generated by some stationary distribution Di. We designate as context
each one of these sequences. In that case, and in the whole dataset, no learn-
ing algorithm can guarantee arbitrary precision. Nevertheless, if the number
of observations within each sequence Si is large enough, we could approximate
a learning model to Di. The main problem is to detect change points whenever
they occur. In real problems between two consecutive sequences Si and Si+1

there could be a transition phase where some examples of both distributions
appear mixed. An example generated by a distribution Di+1 is noise for dis-
tribution Di. This is another difficulty faced by change detection algorithms.
They must differentiate noise from change. The difference between noise and
examples of another distribution is persistence: there should be a consistent
set of examples of the new distribution. Algorithms for change detection must
combine robustness to noise with sensitivity to concept change.

3.2.1 The Nature of Change.

The nature of change is diverse and abundant. In this section, we identify
two dimensions for analysis. The causes of change, and the rate of change. In a

Change Detection 37

Figure 3.1: Three illustrative examples of change: (a) Change on the mean;
(b) Change on variance; (c) Change on correlation

first dimension, the causes of change, we can distinguish between changes due
to modifications in the context of learning, because of changes in hidden vari-
ables, from changes in the characteristic properties in the observed variables.
Existing Machine Learning algorithms learn from observations described by a
finite set of attributes. In real world problems, there can be important prop-
erties of the domain that are not observed. There could be hidden variables
that influence the behavior of nature (Harries et al., 1998). Hidden variables
may change over time. As a result, concepts learned at one time can become
inaccurate. On the other hand, there could be changes in the characteristic
properties of the nature.

The second dimension is related to the rate of change. The term Concept
Drift is more associated to gradual changes in the target concept (for example
the rate of changes in prices), while the term Concept Shift refers to abrupt
changes. Usually, detection of abrupt changes are easier and require few ex-
amples for detection. Gradual changes are more difficult to detect. At least in
the first phases of gradual change, the perturbations in data can be seen as
noise by the detection algorithm. To be resilient to noise, they often require
more examples to distinguish change from noise. In an extreme case, if the
rate of change is large than our ability to learn, we cannot learn anything. In
the other side, slow changes can be confused with stationarity.

We can formalize concept drift as a change in the joint probability P (~x, y),
which can be decomposed in:

P (~x, y) = P (y|~x)× P (~x)

We are interested in changes in the y values given the attribute values ~x, that
is P (y|~x).

Lazarescu et al. (2004) defines concept drift in terms of consistency and
persistence. Consistency refers to the change εt = θt−θt−1 that occurs between
consecutive examples of the target concept from time t− 1 to t, with θt being
the state of the target function in time t. A concept is consistent if εt is

38 Knowledge Discovery from Data Streams

Figure 3.2: Main dimensions in change detection methods in data mining.

smaller or equal than a consistency threshold εc. A concept is persistent if it
is consistent during p times, where p ≥ w

2 and w is the size of the window.
The drift is therefore considered permanent (real) if it is both consistent and
persistent. Virtual drift is consistent but it is not persistent. Noise has neither
consistency nor persistence. Whenever a change in the underlying concept
generating data occurs, the class-distribution changes, at least in some regions
of the instance space. Nevertheless, it is possible to observe changes in the
class-distribution without concept drift. This is usually referred as virtual
drift (Widmer and Kubat, 1996). In practice, the output model needs to be
updated independently the concept drift is real or virtual.

3.2.2 Characterization of Drift Detection Methods

There are several methods in Machine Learning to deal with changing
concepts: Klinkenberg and Renz (1998); Klinkenberg and Joachims (2000);
Klinkenberg (2004); Widmer and Kubat (1996); Zeira et al. (2004). All of
these methods assume that the most recent examples are the relevant ones.
In general, approaches to cope with concept drift can be analyzed into four
dimensions: data management, detection methods, adaptation methods, and
decision model management (see Figure 3.2).

3.2.2.1 Data Management

The data management methods characterize the information about data
stored in memory to maintain a decision model consistent with the actual
state of the nature. We can distinguish:

Change Detection 39

• Full Memory. Methods that store in memory sufficient statistics over
all the examples. Examples include weighting the examples accordingly
to their age. Weighted examples are based on the simple idea that the
importance of an example should decrease with time. A simple strat-
egy consists in multiply the sufficient statistics by a fading factor α
(0 < α < 1). Suppose that at time i, the stored sufficient statistics
is Si−1 and we observe example xi. Assuming an aggregation function
G(x, S), the fading factor acts like: Si = G(xi−1, α × Sxi). Thus, the
oldest information have less importance. Koychev (2000, 2002) present
methods for linear decay, while Klinkenberg (2004) present exponential
decay method. This last method, weights the examples solely based on
their age using an exponential aging function: wλ(x) = exp(−λi), where
example x was found i time steps ago. The parameter λ controls how
fast the weights decrease. For larger values of λ less weight is assigned to
the examples and less importance they have. If λ = 0, all the examples
have the same weight.

• Partial Memory. Methods that store in memory only the most recent
examples. Examples are stored in a first-in first-out (fifo) data structure.
Examples in the fifo define a time-window over the stream of examples.
At each time step, the learner induces a decision model using only the
examples that are included in the window. The key difficulty is how to
select the appropriate window size. A small size window, that reflects
accurately the current distribution, can assure a fast adaptability in
phases with concept changes but in more stable phases it can affect
the learner performance; while a large window would produce good and
stable learning results in periods of stability but can not react quickly
to concept changes.

1. Fixed Size windows. These methods store in memory a fixed
number of the most recent examples. Whenever a new example is
available, it is stored in memory and the oldest one is discarded.
This is the simplest method to deal with concept drift and can be
used as a baseline for comparisons.

2. Adaptive Size windows. In this method, the set of examples
in the window is variable. It is used in conjunction with a detec-
tion model. The most common strategy consists of decreasing the
size of the window whenever the detection model signals drift and
increasing otherwise.

Dynamic environments with non-stationary distributions require the for-
getfulness of the observations not consistent with the actual behavior of the
nature. Drift detection algorithms must not only adapt the decision model
to newer information but also forget old information. The memory model
also indicates the forgetting mechanism. Weighting examples corresponds to a
gradual forgetting. The relevance of old information is less and less important.

40 Knowledge Discovery from Data Streams

Time windows correspond to abrupt forgetting (weight equal 0). The exam-
ples are deleted from memory. We can combine, of course, both forgetting
mechanisms by weighting the examples in a time window (see Klinkenberg
(2004)).

3.2.2.2 Detection Methods

The Detection Model characterizes the techniques and mechanisms for
drift detection. One advantage of the detection model is that they can provide
meaningful description (indicating change-points or small time-windows where
the change occurs) and quantification of the changes. They may follow two
different approaches:

1. Monitoring the evolution of performance indicators. Some indicators
(e.g. performance measures, properties of the data, etc.) are monitored
over time (see Klinkenberg and Renz (1998); Zeira et al. (2004) for a
good overview of these indicators).

2. Monitoring distributions on two different time-windows. A reference win-
dow, that usually summarize past information, and a window over the
most recent examples (Kifer et al., 2004).

Most of the work in drift detection follows the first approach. Relevant
work in this approach is the FLORA family of algorithms developed by (Wid-
mer and Kubat, 1996). FLORA2 includes a window adjustment heuristic for
a rule-based classifier. To detect concept changes, the accuracy and the cov-
erage of the current learner are monitored over time and the window size is
adapted accordingly. In the context of information filtering, Klinkenberg and
Renz (1998) propose monitoring the values of three performance indicators:
accuracy, recall and precision over time, and their posterior comparison to a
confidence interval of standard sample errors for a moving average value (using
the last M batches) of each particular indicator. Klinkenberg and Joachims
(2000) present a theoretically well-founded method to recognize and handle
concept changes using properties of Support Vector Machines. The key idea
is to select the window size so that the estimated generalization error on new
examples is minimized. This approach uses unlabeled data to reduce the need
for labeled data, it does not require complicated parameterization and it works
effectively and efficiently in practice.

An example of the latter approach, in the context of learning from Data
Streams, has been present by Kifer et al. (2004). The author proposes al-
gorithms (statistical tests based on Chernoff bound) that examine samples
drawn from two probability distributions and decide whether these distribu-
tions are different. In the same line, system VFDTc (Gama et al., 2006) has
the ability to deal with concept drift, by continuously monitoring differences
between two class-distribution of the examples: the class-distribution when a
node was a leaf and the weighted sum of the class-distributions in the leaves
descendant of that node.

Change Detection 41

The Cumulative Sum Algorithm. The cumulative sum (CUSUM algo-
rithm) is a sequential analysis technique due to Page (1954). It is typically
used for monitoring change detection. CUSUM was announced in Biometrika
a few years after the publication of the SPRT algorithm (Wald, 1947). It is
the classical change detection algorithm that gives an alarm when the mean
of the input data is significantly different from zero. The CUSUM input can
be any filter residual, for instance the prediction error from a Kalman filter.
The CUSUM test is as follows:

g0 = 0

gt = max(0, gt−1 + (rt − v))

The decision rule is: if gt > λ then alarm and gt = 0. This formula only
detects changes in the positive direction. When negative changes need to be
found as well, the min operation should be used instead of the max operation.
In this case, a change is detected when the value of S is below the (negative)
value of the threshold value.

The CUSUM test is memoryless, and its accuracy depends on the choice
of parameters v and λ. Both parameters are relevant to control the trade-
off between earlier detecting true alarms by allowing some false alarms. Low
values of v allows faster detection, at the cost of increasing the number of false
alarms.

A variant of the previous algorithm is the Page-Hinkley (PH) test. This
is a sequential analysis technique typically used for monitoring change detec-
tion in signal processing. It allows efficient detection of changes in the normal
behavior of a process which is established by a model. The PH test is a se-
quential adaptation of the detection of an abrupt change in the average of a
Gaussian signal (Mouss et al., 2004). This test considers a cumulative variable
mT , defined as the cumulated difference between the observed values and their
mean till the current moment:

mT =

T∑
t=1

(xt − x̄T − δ) where x̄T =
1

T

T∑
t=1

xt

.
Here δ corresponds to the magnitude of changes that are allowed. The

minimum value of this variable is also computed with the following formula:
MT = min(mt, t = 1 . . . T). As a final step, the test monitors the difference
between MT and mT : PHT = mT −MT . When this difference is greater than
a given threshold (λ) we alarm a change in the distribution. The threshold
λ depends on the admissible false alarm rate. Increasing λ will entail fewer
false alarms, but might miss some changes. Figure 3.3 presents an illustrative
example using the Page-Hinkley test.

The slope of the line that approximates the PH statistic provides infor-
mation about the velocity of change. Abrupt and rapid changes correspond to
high slope values. Slow and gradual changes correspond to lower values of the
slope.

42 Knowledge Discovery from Data Streams

Figure 3.3: Illustrative example of the Page-Hinkley test. The left figure
plots the on-line error rate of a learning algorithm. The center plot is the
accumulated on-line error. The slope increases after the occurrence of a change.
The right plot presents the evolution of the PH statistic.

3.2.2.3 Adaptation Methods

The Adaptation model characterizes the adaptation of the decision model.
Here, we consider two different approaches:

1. Blind Methods: Methods that adapt the learner at regular intervals with-
out considering whether changes have really occurred. Examples include
methods that weight the examples according to their age and methods
that use time-windows of fixed size.

2. Informed Methods: Methods that only modify the decision model after
a change was detected. They are used in conjunction with a detection
model.

Blind methods adapt the learner at regular intervals without considering
whether changes have really occurred. Examples of this approach are weighted
examples and time windows of fixed size. Weighted examples are based on the
simple idea that the importance of an example should decrease with time (ref-
erences related to this approach can be found in: Klinkenberg and Renz (1998);
Klinkenberg and Joachims (2000); Lanquillon (2001); Maloof and Michalski
(2000); Widmer and Kubat (1996)).

3.2.2.4 Decision Model Management

Model management characterizes the number of decision models needed to
maintain in memory. The key issue here is the assumption that data generated
comes from multiple distributions, at least in the transition between contexts.
Instead of maintaining a single decision model several authors propose the use
of multiple decision models. A seminal work is the system presented by Kolter
and Maloof (2003). The Dynamic Weighted Majority algorithm (DWM) is an

Change Detection 43

ensemble method for tracking concept drift. DWM maintains an ensemble of
base learners, predicts target values using a weighted-majority vote of these
experts, and dynamically creates and deletes experts in response to changes
in performance. DWM maintains an ensemble of predictive models, each with
an associated weight. Experts can use the same algorithm for training and
prediction, but are created at different time steps so they use different training
set of examples. The final prediction is obtained as a weighted vote of all the
experts. The weights of all the experts that misclassified the example are
decreased by a multiplicative constant β. If the overall prediction is incorrect,
a new expert is added to the ensemble with weight equal to the total weight
of the ensemble. Finally, all the experts are trained on the example. Later,
the same authors present the AddExp algorithm (Kolter and Maloof, 2005), a
variant of DWM extended for classification and regression, able to prune some
of the previous generated experts. All these algorithms are further detailed in
Chapter 10.

Another important aspect is the granularity of decision models. When drift
occurs, it does not have impact in the whole instance space, but in particular
regions. Adaptation in global models (like naive Bayes, discriminant functions,
SVM) require reconstruction of the decision model. Granular decision models
(like decision rules and decision trees 1 can adapt parts of the decision model.
They only need to adapt those parts that cover the region of the instance space
affected by drift. An instance of this approach is the CVFDT algorithm (Hul-
ten et al., 2001) that generate alternate decision trees at nodes where there is
evidence that the splitting test is no more appropriate. The system replaces
the old tree with the new one when the last becomes more accurate.

3.2.3 A Note on Evaluating Change Detection Methods

Error rate is one of the most relevant criterion for classifier evaluation.
To evaluate the performance of change detection methods when data evolves
over time, other performance metrics are needed. Relevant criteria for change
detection methods include:

• Probability of True detection: capacity to detect and react to drift;

• Probability of False alarms: resilience to false alarms when there is no
drift, that is not detect drift when there is no change in the target
concept;

• Delay in detection: the number of examples required to detect a change
after the occurrence of a change.

1Nodes in a decision tree correspond to hyper-rectangles in particular regions of the
instance space.

44 Knowledge Discovery from Data Streams

Figure 3.4: The space state transition graph.

3.3 Monitoring the Learning Process

In most of real-world applications of Machine Learning data is collected
over time. For large time periods, it is hard to assume that examples are in-
dependent and identically distributed. At least in complex environments it is
highly probable that class-distributions changes over time. In this work we
assume that examples arrive one at a time. The framework could be easy ex-
tended to situations where data comes on batches of examples. We consider
the on-line learning framework: when an example becomes available, the deci-
sion model must take a decision (e.g. a prediction). Only after the decision has
been taken, the environment reacts providing feedback to the decision model
(e.g. the class label of the example). In the PAC learning model (Mitchell,
1997), it is assumed that if the distribution of the examples is stationary,
the error rate of the learning algorithm (pi) will decrease when the number
of examples (i) increases 2. This sentence holds for any learning algorithm
with infinite-capacity (e.g. decision trees, neural networks, etc.). A significant
increase in the error of the algorithm when trained using more examples, sug-
gests a change in the intrinsic properties in the process generating examples
and that the actual decision model is no more appropriate.

3.3.1 Drift Detection using Statistical Process Control

Suppose a sequence of examples, in the form of pairs (~xi, yi). For each
example, the actual decision model predicts ŷi, that can be either True (ŷi =
yi) or False (ŷi 6= yi). For a set of examples, the error is a random variable
from Bernoulli trials. The Binomial distribution gives the general form of the
probability for the random variable that represents the number of errors in

2For an infinite number of examples, the error rate will tend to the Bayes error.

Change Detection 45

a sample of n examples. For each point i in the sequence, the error-rate is
the probability of observe False, pi, with standard deviation given by si =√
pi(1− pi)/i. The drift detection method manages two registers during the

training of the learning algorithm, pmin and smin. For each new processed
example i, if pi + si is lower than pmin + smin these values are updated.

For a sufficient large number of examples, the Binomial distribution is
closely approximated by a Normal distribution with the same mean and vari-
ance. Considering that the probability distribution is unchanged when the
context is static, then the 1 − α/2 confidence interval for p with n > 30 ex-
amples is approximately pi ± z ∗ si. The parameter z depends on the desired
confidence level.

Suppose that in the sequence of examples, there is an example j with
correspondent pj and sj . We define three possible states for the system:

• In-Control: while pj + sj < pmin + β ∗ smin. The error of the system
is stable. The example j is generated from the same distribution of the
previous examples.

• Out-of-Control: whenever pj +sj ≥ pmin+α∗smin. The error is increas-
ing, and reaches a level that is significantly higher from the past recent
examples. With probability 1−α/2 the current examples are generated
from a different distribution.

• Warning: whenever the system is in between the two margins. The error
is increasing but without reaching an action level. This is a not decid-
able state. The causes of error increase can be due to noise, drift, small
inability of the decision model, etc. More examples are needed to make
a decision.

The graph describing the state transition is presented in figure 3.4. It is
not possible to move from a stationary state to a drift state without passing
the warning state. However, it is possible to move from a warning state to a
stationary state. For example, we can observe an increase of the error reaching
the warning level, followed by a decrease. We assume that such situations cor-
responds to a false alarms, most probably due to noisy data, without changing
of context.

We use a warning level to define the optimal size of the context window.
The context window will contain the old examples that are on the new con-
text and a minimal number of examples on the old context. Suppose that,
in the sequence of examples that traverse a node, there is an example i with
correspondent pi and si. In the experiments described next, the confidence
level for warning has been set to 95%, that is, the warning level is reached
if pi + si ≥ pmin + 2 ∗ smin. The confidence level for drift has been set to
99%, that is, the drift level is reached if pi + si ≥ pmin + 3 ∗ smin. Suppose a
sequence of examples where the error of the actual model increases reaching
the warning level at example kw, and the drift level at example kd. This is an
indication of a change in the distribution of the examples. A new context is

46 Knowledge Discovery from Data Streams

Figure 3.5: Dynamically constructed time-window. The vertical line marks
the change of concept.

declared starting in example kw, and a new decision model is induced using
only the examples starting in kw till kd.

The SPC algorithm (Algorithm 8) provides information not only when drift
occurs but also the rate of change. The distance between warning and drift
provides such information. Small distances imply fast change rate while larger
distances indicate slower changes. Considering only the warning zone, the
ratio between the number of errors and the number of processed examples is
an indication of the rate of change. A major characteristic is the use of the
variance of the error estimate to define the action boundaries. The boundaries
are not fixed but decrease as confidence in the error estimates increase. SPC
can be directly implemented inside on-line and incremental algorithms, or as
a wrapper to batch learners. Figure 3.5 details the dynamic window structure.

3.3.2 An Illustrative Example

The use of an artificial data set, allows us to control and evaluate experi-
ences more precisely. The artificial dataset used, the SEA concepts was first
described in Street and Kim (2001). It consists of three attributes, where only
two are a relevant attributes: xi ∈ [0, 10], where i = 1, 2, 3 . The target concept
is x1 + x2 ≤ β, where β ∈ {7, 8, 9, 9.5}. The training set have four blocks. For
the first block the target concept is with β = 8. For the second, β = 9; the
third, β = 7; and the fourth, β = 9.5. That is, the target concept changes over
time.

Change Detection 47

Algorithm 8: The SPC Algorithm

input: Φ: Current decision model
Sequence of examples: {~xj , yj}n

begin
Let ~xj , yj be the current example;
Let ŷj ← Φ(~xj);
Let errorj ← L(ŷj , yj);
Compute error’s mean pj and variance sj ;
if pj + sj < pmin + smin then

pmin ← pj ;
smin ← sj ;

if pj + sj < pmin + β × smin then
/* In-Control */

Warning?← False;
Update the current decision model with the example ~xj , yj ;

else
if pj + sj < pmin + α× smin then

/* Warning Zone */

if NOT Warning? then
buffer ← {~xj , yj};
Warning?← TRUE ;

else
buffer ← buffer ∪ {~xj , yj};

else
/* Out-Control */

Re-learn a new decision model using the examples in the
buffer;
Warning?← False;
Re-start pmin and smin;

Figure 3.6 illustrates the use of the SPC algorithm as a wrapper over
a naive-Bayes classifier that incrementally learns the SEA concept dataset.
The vertical bars denote drift occurrence, while doted vertical bars indicate
when drift was detect. Both figures plot the classifier prequential error (see
chapter 5). In the left figure, the classifier trains with the examples stored in
the buffer after the warning level was reached.

From the practical point of view, when a drift is signaled, the method
defines a dynamic time window of the most recent examples used to train a
new classifier. Here the key point is how fast the change occurs. If the change
occurs at slow rate, the prequential error will exhibit a small positive slope.
More examples are needed to evolve from the warning level to the action

48 Knowledge Discovery from Data Streams

Figure 3.6: Illustrative example of using the SPC algorithm in the Sea con-
cept dataset. All the figures plot the prequential error of a naive-Bayes in
the SEA-concepts dataset. In the first plot there is no drift detection. In the
second plot, the SPC algorithm was used to detect drift. The third plot is
similar to the second one, without using buffered examples when a warning is
signaled.

level and the window size increases. For abrupt changes, the increase of the
prequential error will be also abrupt and a small window (using few examples)
will be chosen. In any case the ability of training a new accurate classifier
depends on the rate of changes and the capacity of the learning algorithm
to converge to a stable model. The last aspect depends on the number of
examples in the context.

3.4 Final Remarks

Change detection is one of the most relevant aspects when learning from
time evolving data. The fact that data are produced on a real-time basis,
or, at least, in a sequential fashion, and that the environment and the task
at hand may change over time, profoundly modifies the underlying assump-
tions on which rest most of the existing learning techniques and demands the
development of new principles and new algorithms. The challenge problem
for data mining is the ability to continuously maintain an accurate decision
model. In this context, the assumption that examples are generated at ran-
dom according to a stationary probability distribution does not hold, at least
not in complex systems and for large periods of time. Old observations, that
reflect the past behavior of the nature, become irrelevant to the current state
of the phenomena under observation and the learning agent must forget that
information.

The main research issue is how to incorporate change detection mecha-

Change Detection 49

nisms in the learning algorithm. Embedding change detection methods in the
learning algorithm is a requirement in the context of continuous flow of data.
The level of granularity of decision models is a relevant property (Fan, 2004),
because if can allow partial, fast and efficient updates in the decision model
instead of rebuilding a complete new model whenever a change is detected.
The ability to recognize seasonal and re-occurring patterns is an open issue.

3.5 Notes

Change detection and concept drift have attracted much attention in the
last 50 years. Most of the works deal with fixed-sample problem and at-most
one change model. A review of techniques, methods and applications of change
detection appear in Basseville and Nikiforov (1993); Ghosh and Sen (1991).
Procedures of sequential detection of changes have been studied in statistical
process control (Grant and Leavenworth, 1996). The pioneer work in this area
is Shewhart (1931), which presented the 3-sigma control chart. More efficient
techniques, the cumulative sum procedures, were developed by Page (1950).
Cumulative sums have been used in data mining in Pang and Ting (2004).
Kalman filters associated with CUSUM appear in Schön et al. (2005); Bifet
and Gavaldà (2006); Severo and Gama (2006).

In the 90’s, concept drift was studied by several researchers in the context
of finite samples. The relevant works include Schlimmer and Granger (1986),
with the system STAGGER and the famous STAGGER dataset, Widmer
and Kubat (1996), presenting the FLORA family of algorithms, and Harries
et al. (1998), that present the Splice system for identifying context changes.
Kuh et al. (1990) present bounds on the frequency of concept changes, e.g.
rate of drift, that is acceptable by any learner. Pratt and Tschapek (2003)
describe a visualization technique that uses brushed, parallel histograms to
aid in understanding concept drift in multidimensional problem spaces.

A survey on incremental data mining model maintenance and change de-
tection under block evolution appears in Ganti et al. (2002). Remember that
in block evolution (Ramakrishnan and Gehrke, 2003), a dataset is updated pe-
riodically through insertions and deletions of blocks of records at each time.

One important application of change detection algorithms is in burst de-
tection. Burst regions are time intervals in which some data features are un-
expected. For example, gamma-ray burst in astronomical data might be as-
sociated with the death of massive starts; bursts in document streams might
be valid indicators of emerging topics, strong buy-sell signals in the financial
market, etc. Burst detection in text streams was discussed in Kleinberg (2004).
Vlachos et al. (2005) discuss a similar problem in financial streams.

50 Knowledge Discovery from Data Streams

Chapter 4

Maintaining Histograms from Data
Streams

Histograms are one of the most used tools in exploratory data analysis. They
present a graphical representation of data, providing useful information about
the distribution of a random variable. Histograms are widely used for density
estimation. They have been used in approximate query answering, in process-
ing massive datasets, to provide a quick but faster answer with error guaran-
tees. In this chapter we present representative algorithms to learn histograms
from data streams and its application in data mining.

4.1 Introduction

A histogram is visualized as a bar graph that shows frequency data. The
basic algorithm to construct an histogram consists of sorting the values of
the random variable and place them into bins. Then we count the number of
data points in each bin. The height of the bar drawn on the top of each bin
is proportional to the number of observed values in that bin.

A histogram is defined by a set of non-overlapping intervals. Each interval
is defined by the boundaries and a frequency count. In the context of open-
ended data streams, we never observe all values of the random variable. For
that reason, and allowing consider extreme values and outliers, we define an
histogram as a set of break points b1, ..., bk−1 and a set of frequency counts
f1, ..., fk−1, fk that define k intervals in the range of the random variable:
]−∞, b1],]b1, b2], ...,]bk−2, bk−1],]bk−1,∞[.

The most used histograms are either equal width, where the range of ob-
served values is divided into k intervals of equal length (∀i, j : (bi − bi−1) =
(bj − bj−1)), or equal frequency, where the range of observed values is divided
into k bins such that the counts in all bins are equal (∀i, j : (fi = fj)).

51

52 Knowledge Discovery from Data Streams

4.2 Histograms from Data Streams

When all the data is available, there are exact algorithms to construct his-
tograms. All these algorithms require a user defined parameter k, the number
of bins. Suppose we know the range of the random variable (domain infor-
mation), and the desired number of intervals k. The algorithm to construct
equal width histograms traverse the data once; whereas in the case of equal
frequency histograms a sort operation is required. One of the main problems
of using histograms is the definition of the number of intervals. A rule that
has been used is the Sturges’ rule: k = 1 + log2(n), where k is the number of
intervals and n is the number of observed data points. This rule has been crit-
icized because it is implicitly using a binomial distribution to approximate an
underlying normal distribution 1. Sturges rule has probably survived as long
as it has because, for moderate values of n (less than 200) produces reasonable
histograms. However, it does not work for large n. In exploratory data anal-
ysis histograms are used iteratively. The user tries several histograms using
different values of the number of intervals, and choose the one that better fits
his purposes.

4.2.1 K-buckets Histograms

Gibbons et al. (1997) discuss histograms in the context of DBMS, for accel-
erating queries, namely range-queries. Most of the work in this area applies to
static databases, using pre-computed histograms or histograms computed from
time to time (e.g. every night). In these settings, histograms become quickly
out-dated, providing answers with increasing errors. Gibbons et al. (1997)
present approaches for incremental maintenance of approximate histograms
that might be applied in databases with continuous inserts and deletes.

An illustration of the algorithm presented by Gibbons et al. (1997) for
incremental maintenance of histograms with a fixed number of buckets is
presented in figure 4.1. The number of bins is defined a priori. The counts of
each bin are continuously incremented or decremented as inserts and deletes
occurs in the database. Histogram maintenance is based on two operators:

• Split & Merge Operator: triggers whenever the count in a bucket is
greater than a given threshold. It occurs with inserts in the database.
The bucket is divided into two, and two consecutive buckets are merged.

• Merge & Split Operator: triggers whenever the count in a bucket is below
a given threshold. It occurs with deletes in the database. The bucket is

1Alternative rules for constructing histograms include Scott (1979) rule for the class
width: h = 3.5sn−1/3 and Freedman and Diaconis (1981) rule for the class width: h =
2(IQ)n−1/3 where s is the sample standard deviation and IQ is the sample interquartile
range.

Maintaining Histograms from Data Streams 53

merged with a neighbor bucket, and the bucket with higher counts is
divided into two.

Figure 4.1: Split & Merge and Merge & Split Operators.

4.2.2 Exponential Histograms

The Exponential histogram (Datar et al., 2002) is another histogram fre-
quently used to solve counting problems. Consider a simplified data stream
environment where each element comes from the same data source and is
either 0 or 1. The goal consists of counting the number of 1’s in a sliding
window. The problem is trivial if the window can fit in memory. Assume that
N is the window size, can we solve the problem using O(log(N)) space? Datar
et al. (2002) presented an exponential histogram strategy to solve this prob-
lem. The basic idea consist of using buckets of different sizes to hold the data.
Each bucket has a time stamp associated with it. This time stamp is used to
decide when the bucket is out of the window. Exponential histograms, other
than buckets, use two additional variables, LAST and TOTAL. The variable
LAST stores the size of the last bucket. The variable TOTAL keeps the total
size of the buckets.

When a new data element arrives, we first check the value of the element.
If the new data element is zero, ignore it. Otherwise create a new bucket of
size 1 with the current time-stamp and increment the counter TOTAL. Given
a parameter ε, if there are |1/ε|/2 + 2 buckets of the same size, merge the two
oldest buckets of the same size into a single bucket of double size. The largest
time-stamp of the two buckets is used as the time-stamp of the newly created
bucket. If the last bucket gets merged, we update the size of the merged bucket
to the counter LAST .

Whenever we want to estimate the moving sum, we check if the oldest
bucket is within the sliding window. If not, we drop that bucket, subtract
its size from the variable TOTAL, and update the size of the current oldest
bucket to the variable LAST . This procedure is repeated until all the buckets
with the timestamps outside of the sliding window are dropped. The estimate
number of 1’s in the sliding window is TOTAL− LAST/2.

54 Knowledge Discovery from Data Streams

4.2.2.1 An Illustrative Example

Assume we are interested in counting the number of 1’s in a time win-
dow of length 10, allowing a relative error of 0.5. With these parameters, we
should merge buckets, when there are 3 buckets of the same size: |1/0.5|/2+2.
Assuming the illustrative stream:

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Element 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0

The trace of the evolution of the exponential histogram, is:

Time Buckets Total Last
T1 11 1 1
T2 11, 12 2 1
T3 11, 12, 13 3 1
(merge) 22, 13 3 2
T4 22, 13, 14 4 2
T5 22, 13, 14 4 2
T6 22, 13, 14, 16 5 2

22, 24, 16 5 2
T7 22, 24, 16 5 2
T8 22, 24, 16, 18 6 2
T9 22, 24, 16, 18, 19 7 2

22, 24, 28, 19 7 2
44, 28, 19 7 4

T10 44, 28, 19, 110 8 4
T11 44, 28, 19, 110, 111 9 4

44, 28, 210, 111 9 4
T12 44, 28, 210, 111, 112 10 4
T13 44, 410, 212, 113 11 4
T14 44, 410, 212, 113, 114 12 4
(Removing out-of-date)
T15 410, 212, 113, 114 8 4

4.2.2.2 Discussion

The main property of the exponential histograms, is that the size grows
exponentially, i.e. 20, 21, 22, ..., 2h. Datar et al. (2002) show that using the
algorithm for the basic counting problem, one can adapt many other tech-
niques to work for the sliding window model, with a multiplicative overhead
of O(log(N)/ε) in memory and a 1 + ε factor loss in accuracy. These include
maintaining approximate histograms, hash tables, and statistics or aggregates
such as sum and averages.

In this example the time scale is compressed. The most recent data is
stored inside the window at the finest detail (granularity). Oldest information
is stored at a coarser detail, in an aggregated way. The level of granularity
depends on the application. This window model is designated as tilted time

Maintaining Histograms from Data Streams 55

window. Tilted time windows can be designed in several ways. Han and Kam-
ber (2006) present two possible variants: natural tilted time windows, and
logarithm tilted windows. Illustrative examples are presented in Figure 2.4. In
the first case, data is store with granularity according to a natural time tax-
onomy: last hour at a granularity of fifteen minutes (4 buckets), last day in
hours (24 buckets), last month in days (31 buckets) and last year in months
(12 buckets). Similar time scale compression appears in the case of logarith-
mic tilted windows. Here, all buckets have the same size. Time is compressed
using an exponential factor: 20, 21, 22, Buckets aggregate and store data
from time-intervals of increasing size.

4.3 The Partition Incremental Discretization Algorithm
- PiD

Gama and Pinto (2006); Pinto and Gama (2007) present the Partition In-
cremental Discretization algorithm (PiD for short) one of the first approaches
for incremental discretization. PiD is composed by two layers. The first layer
simplifies and summarizes the data; the second layer construct the final his-
togram.

The first layer is initialized without seeing any data. The input for the ini-
tialization phase is the number of intervals (that should be much greater than
the desired final number of intervals) and the range of the variable. The range
of the variable is only indicative. It is used to initialize the set of breaks using
a equal-width strategy. Each time we observe a value of the random variable,
we update layer1. The update process determines the interval corresponding
to the observed value, and increments the count of this interval. Whenever
the count of an interval is above a user defined threshold (a percentage of the
total number of points seen so far), a split operator triggers. The split oper-
ator generates new intervals in layer1. If the interval that triggers the split
operator is the first or the last a new interval with the same step is inserted.
In all the other cases, the interval is split into two, generating a new interval.

The process of updating layer1 works on-line, performing a single scan
over the data stream. It can process infinite sequences of data, processing
each example in constant time and space.

The second layer merges the set of intervals defined by the first layer. It
triggers whenever it is necessary (e.g. by user action). The input for the second
layer is the breaks and counts of layer1, the type of histogram (equal-width
or equal-frequency) and the number of intervals. The algorithm for the layer2

is very simple. For equal-width histograms, it first computes the breaks of the
final histogram, from the actual range of the variable (estimated in layer1).
The algorithm traverses the vector of breaks once, adding the counts corre-

56 Knowledge Discovery from Data Streams

Algorithm 9: The PiD algorithm for updating layer1.

input: x: Current value of the random variable
breaks: vector of actual set of break points
counts: vector of actual set of frequency counts
NrB: Actual number of breaks
α: Threshold for Split an interval
Nr: Number of observed values seen so far

begin
k ← 2 + integer((x− breaks[1])/step);
if (x < breaks[1]) then

k ← 1;
Min.x← x;

if (x > breaks[NrB]) then
k ← NrB;
Max.x← x;

while (x < breaks[k − 1]) do k ← k − 1 ;
while (x > breaks[k]) do k ← k + 1 ;
counts[k] = 1 + counts[k] ;
Nr ← 1 +Nr;
if (1 + counts[k])/(Nr + 2) > α then

val← counts[k]/2 ;
counts[k]← val;
if (k == 1) then

breaks← append(breaks[1]− step, breaks);
counts← append(val, counts);

else
if (k == NrB) then

breaks← append(breaks, breaks[NrB] + step) ;
counts← append(counts, val) ;

else
breaks← Insert((breaks[k] + breaks[k+ 1])/2, breaks, k)
;
counts← Insert(val, counts, k) ;

NrB ← NrB + 1;

Maintaining Histograms from Data Streams 57

Figure 4.2: An illustrative example of the two layers in PiD. The input for
layer1 is the raw data stream; the input for layer2 is the counts stored in
layer1.

sponding to two consecutive breaks. For equal-frequency histograms, we first
compute the exact number F of points that should be in each final inter-
val (from the total number of points and the number of desired intervals).
The algorithm traverses the vector of counts of layer1 adding the counts of
consecutive intervals till F .

The two-layer architecture (see Figure 4.2) divides the histogram problem
into two phases. In the first phase, the algorithm traverses the data stream
and incrementally maintains an equal-with discretization. The second phase
constructs the final histogram using only the discretization of the first phase.
The computational costs of this phase can be ignored: it traverses once the
dicretization obtained in the first phase. We can construct several histograms
using different number of intervals, and different strategies: equal-width or
equal-frequency. This is the main advantage of PiD in exploratory data anal-
ysis. PiD was used as a building block for a distributed clustering algorithm
discussed in Section 12.3.2.

58 Knowledge Discovery from Data Streams

4.3.1 Analysis of the Algorithm

The histograms generated by PiD are not exact. There are two sources of
error:

1. The set of boundaries. The breaks of the histogram generated in the
second layer are restricted to set of breaks defined in the first layer.

2. The frequency counters. The counters of the second layer are aggrega-
tions of the frequency counters in the first layer. If the splitting operator
does not trigger, counters in first layer are exact, and also counters in
second layer. The splitting operator can produce inexact counters. If
the merge operation of the second layer aggregate those intervals, final
counters are correct.

A comparative analysis of the histograms produced by PiD and histograms
produced by exact algorithms using all the data, reveals some properties of
the PiD algorithm. Illustrative examples are presented in Figure 4.3. Assuming
a equal-width discretization (that is the split operator did not trigger) for the
first layer and any method for the second layer, the error of PiD boundaries
(that is the sum of absolute differences between boundaries between PiD and
batch discretization) is bound, in the worst case, by: R ∗N2/(2 ∗N1), where
N1 denotes the number of intervals of layer1, N2 the number of intervals of
layer2, and R is the range of the random variable. This indicates that when
N1 increases the error decreases. The algorithm guarantees that frequencies
at second layer are exact (for the second layer’ boundaries). We should note
that the splitting operator will always decrease the error.

The time complexity of PiD depends on the discretization methods used
in each layer. The time complexity of the second layer is constant because its
input is the first layer that has a (almost) fixed number of intervals. The time
complexity for the first layer is linear in the number of examples.

4.3.2 Change Detection in Histograms

The ability to detect and react to changes in the environment producing
data is a key issue in data stream processing. As we have seen in chapter 3.1,
one of the most used methods to react to changes, consists of weighting ex-
amples: most recent examples are more important. The weight associate with
one example decreases with the age of the example. The simplest strategy use
a exponential weight decay. The weight of an example at time t is given by
the expression: wt = wt−1×α. This is accomplished by triggering a process at
each k examples. Every counter in the histogram is multiplied by α, a positive
constant less than 1. This means that oldest examples get less and less weight.
This method do not detect changes. The adaptation process is blind.

Another approach consists of monitoring distributions from two differ-
ent time windows (Kifer et al., 2004): a reference time window, that reflects
the distribution observed in the past; and the current time window reflecting

Maintaining Histograms from Data Streams 59

Figure 4.3: Comparison between batch histograms and PiD histograms. We
show the histograms (using equal-width and equal-frequency) for Normal, Log-
Normal, and Uniform random variables.

the distribution observed in the most recent data. Both distributions can be
compared using the Kullback-Leibler (KL) divergence (Sebastião and Gama,
2007). The Kullback-Leibler divergence measures the distance between two
probability distributions and so it can be used to test for change. Given a
reference window with empirical probabilities pi, and a sliding window with
probabilities qi, the KL divergence is:

KL(p||q) =
∑
i

p(i)log2
p(i)

q(i)
.

The KL divergence is non-negative and asymmetric and as higher is his value,
the more distinct the distribution of the two variables. A higher value of
the distance represents distributions that are further apart. A change is sig-
naled whenever the the Kullback-Leibler divergence is greater than a threshold
value.

4.3.3 An Illustrative Example

In this section we compare the output of PiD against the set of intervals
obtained using all the training data and the same discretization strategy of

60 Knowledge Discovery from Data Streams

Equal-Frequency Affinity MAD MSE
Normal 0.999 0.128 0.084
Lognormal 0.995 0.086 0.047
Uniform 1.000 0.001 0.004
Equal-Width Affinity MAD MSE
Uniform 1.000 0.010 0.004
Lognormal 1.000 0.081 0.029
Normal 0.999 0.002 0.001

Table 4.1: Average results of evaluation metrics of the quality of discretiza-
tion.

PiD. For layer1, the number of intervals was set to 200. For layer2, the number
of intervals was set to 10, in two scenarios: equal width and equal frequency.

We have done illustrative experiments using a sample of 100k values of
a random variable from different distributions: Uniform, Normal, and Log-
Normal. Results reported here are the averages of 100 experiments. We eval-
uate two quality measures: the set of boundaries and frequencies. Boundaries
are evaluated using the mean absolute deviation: mad(P, S) =

∑
(|Pi−Si|)/n,

and the mean squared error: mse(P, S) =
√∑

(Pi − Si)2/n. To compare fre-
quencies, we use the affinity coefficient (Bock and Diday, 2000): AF (P, S) =∑√

Pi × Si 2. Its range is [0; 1]; values near 1 indicate that the two distribu-
tions are not different. The median of the performance metrics are presented
in table 4.1. The discretization provided by layer2 is based on the summaries
provided by layer1. Of course, the summarization of layer1 introduces an er-
ror. These results provide evidence that the impact of this error in the final
discretization is reduced. Moreover, in a set of similar experiments, we have
observed that increasing the number of intervals of layer1 decreases the error.

The advantage of the two-layer architecture of PiD, is that after gener-
ating the layer1, the computational costs, in terms of memory and time, to
generate the final histogram (the layer2) are low: only depend on the num-
ber of intervals of the layer1. From layer1 we can generate histograms with
different number of intervals and using different strategies (equal-width or
equal-frequency). We should note that the standard algorithm to generate
equal-frequency histograms requires a sort operation, that could be costly for
large n. This is not the case of PiD. Generation of equal-frequency histograms
from the layer1 is straightforward.

2P denotes the set of boundaries (frequency in the case of AF) defined by PiD, and S
denotes the set of boundaries (frequency) defined using all the data.

Maintaining Histograms from Data Streams 61

4.4 Applications to Data Mining

Discretization of continuous attributes is an important task for certain
types of machine learning algorithms. Bayesian approaches, for instance, re-
quire assumptions about data distribution. Decision Trees require sorting op-
erations to deal with continuous attributes, which largely increase learning
times. Nowadays, there are hundreds of discretization methods: Dougherty
et al. (1995); Yang (2003); Kerber (1992); Boulle (2004). Dougherty et al.
(1995) define three different dimensions upon which we may classify discretiza-
tion methods: supervised vs. unsupervised, global vs. local and static vs. dy-
namic. Supervised methods use the information of class labels while unsuper-
vised methods do not. Local methods like the one used by C4.5, produce parti-
tions that are applied to localized regions of the instance space. Global methods
such as binning are applied before the learning process to the whole data. In
static methods attributes are discretized independently of each other, while dy-
namic methods take into account the interdependencies between them. There
is another dimension, parametric vs. non-parametric methods, where paramet-
ric methods need user input, like the number of bins, and non-parametric uses
only information from data.

One of the most successful discretization method is the Recursive entropy
discretization presented by Fayyad and Irani (1993). This algorithm uses the
class information entropy of candidate partitions to select the boundaries for
discretization. It starts finding a single threshold that minimizes the entropy
function over all possible cut-points; it is then recursively applied to both par-
titions. The stopping criteria uses the minimum description length principle.
This is a supervised, non-parametric, and global method.

4.4.1 Applying PiD in Supervised Learning

The application of the framework defined in section 4.3 to classification
supervised learning is straightforward. We only need to consider another data
structure, in both layers, to store the information about the number of exam-
ples per class in each interval. For both layers, the data structure is a matrix
where the number of columns is equal to the number of intervals and the
number of rows is equal to the number of classes. To update the distribution
matrix in layer1, we need the class value associated with each example.

From the information stored in the distribution matrix, it is easy to obtain
the conditional probability that an attribute-value belongs to an interval given
that the corresponding example belongs to a class: P (bi < x ≤ bi+1|Classj).
This is the information required by some classification algorithms, for example
decision trees using multi-interval discretization and naive Bayes. It is relevant
to note that PiD gives for free all the information required by naive Bayes.
This is the main reason for using this algorithm in our experimental section.

62 Knowledge Discovery from Data Streams

So far, we have seen two unsupervised discretization methods: equal width
and equal frequency. The distribution matrix in layer1 allow us to use su-
pervised discretization methods, like Recursive entropy discretization (Fayyad
and Irani, 1993) or chi-merge (Kerber, 1992; Boulle, 2004). These methods
have some advantages: they are supervised, so more appropriate for classifica-
tion problems, and the number of intervals of the final discretization (layer2

in our case) is automatically determined.
In some learning scenarios, for example on-line learning, we need to main-

tain a permanent discretization in layer2. Till now, layer1 is updated on-line,
but layer2 is computed from time to time when requested. Suppose we have a
layer1 and a layer2. Whenever a new example is available, we update layer1

(and the distribution matrix) using the algorithm in Algorithm 9. It is im-
probable that a single observation changes the distribution in layer2, so we
find the corresponding interval in layer2 and update the frequency counters
and distribution matrix. Now we are faced with the problem: When should
we reconstruct layer2? We consider three cases:

• Equal-width histograms are defined by breaks bi such that bi+1 − bi =
bj+1 − bj for each i and j. The layer2 needs to be reconstructed only
when the set of breaks in layer1 changes. This only occurs whenever the
split operator triggers. After applying the split operator, the algorithm
reconstructs layer2.

• Equal-frequency histograms are defined by frequencies fi. PiD does not
guarantee that all fi are equal. Suppose that after seeing n examples,
the algorithm reconstruct layer2. We define two thresholds Tmin =
min(fi/n) and Tmax = max(fi/n). Whenever we observe an interval
with frequency below (1−α)× Tmin or above (1 +α)× Tmax we recon-
struct layer2

3.

• Other type of histograms, for example, entropy based or chi-merge, we
have not find well founded strategies. We use a very simple strategy that
reconstructs layer2 after seeing a pre-defined number of examples.

Most of naive Bayes implementations assume a pre-defined number of attribute-
values for each attribute. The recursive entropy discretization can generate,
for each attribute, different numbers of intervals at different times. The infor-
mation provided by PiD allow us to use naive-Bayes in these cases. Another
issue is: knowing the range of the random variable and fixing the number of
intervals, equal-width discretization is naturally incremental. Why should we
use PiD with equal-width in layer2? What is the advantage? The advantage
is that we can use different number of intervals in layer2. Most of the rules for
determining the number of intervals point out that for an increasing number of
examples we should use an increasing number of intervals. Its straightforward
to incorporate this ability in PiD.

3A reasonable value for α seems to be 1%.

Maintaining Histograms from Data Streams 63

Figure 4.4: The evolution of the partitions at the second layer.

4.4.2 Time-Changing Environments

To test the incremental discretization in time-changing scenarios, we use
the SEA concepts dataset (Street and Kim, 2001). This is a two classes prob-
lem, defined by three attributes. All three attributes take values between 0
and 10 but only the last two attributes are relevant. A data point belongs to
class + iif Att2 +Att3 ≤ θ, where Att2 and Att3 represent the two last features
and θ is a threshold. Drift is simulated by changing the threshold value.

In our experiences, we generate four blocks of 100k points each. For each
block the threshold values were 7, 8, 10 and 11 respectively. The discretiza-
tion used PiD, adopting a equal-width with 200 intervals for the first layer
and a equal-frequency with 10 intervals for the second layer. The exponential
decay was applied every 1000 examples with α set to 0.9. Figure 4.4 presents
the evolution over time, of the second layer distribution for each attribute.
In Att1 no significant changes occur, its distribution was the same in each
block of data; changes in the distribution appear in both Att2 and Att3. The
distribution of Att3 is almost the mirror of Att2.

64 Knowledge Discovery from Data Streams

4.5 Notes

Histograms are the most basic form for density estimation. Other ap-
proaches to density estimation are kernel density estimation methods, for ex-
ample, Parzen windows. A probability distribution function (pdf) or density
of a random variable is a function that describes the density of probability at
each point. The probability of a random variable is given by the integral of its
density. Clustering, discussed in Chapter 6, are more sophisticated techniques
that can be used for density estimation.

Chapter 5

Evaluating Streaming Algorithms

Nowadays, several stream learning algorithms have been developed. Most of
them learn decision models that continuously evolve over time, run in resource-
aware environments, and detect and react to changes in the environment gen-
erating data. One important issue, not yet conveniently addressed, is the de-
sign of experimental work to evaluate and compare decision models that evolve
over time. In this chapter we present a general framework for assessing the
quality of streaming learning algorithms. We defend the use of Predictive Se-
quential error estimates over a sliding window to assess performance of learn-
ing algorithms that learn from open-ended data streams in non-stationary
environments. This chapter studies convergence properties and methods to
comparatively assess algorithm performance.

5.1 Introduction

Most recent learning algorithms (Cormode et al., 2007; Babcock et al.,
2003; Domingos and Hulten, 2000; Hulten et al., 2001; Gama et al., 2003;
Ferrer-Troyano et al., 2004) maintain a decision model that continuously
evolve over time, taking into account that the environment is non-stationary
and computational resources are limited. Examples of public available software
for learning from data streams include: the VFML (Hulten and Domingos, 2003)
toolkit for mining high-speed time-changing data streams, the MOA (Kirkby,
2008) system for learning from massive data sets, Rapid-Miner (Mierswa
et al., 2006) a data mining system with plug-in for stream processing, etc.

Although the increasing number of streaming learning algorithms, the met-
rics and the design of experiments for assessing the quality of learning models
is still an open issue. The main difficulties are:

• We have a continuous flow of data instead of a fixed sample of iid ex-
amples;

• Decision models evolve over time instead of static models;

• Data is generated by dynamic environment non-stationary distributions
instead of a stationary sample;

65

66 Knowledge Discovery from Data Streams

In a referenced paper, Dietterich (1996) proposes a straightforward technique
to evaluate learning algorithms when data is abundant: “learn a classifier from
a large enough training set and apply the classifier to a large enough test set.”

Data streams are open-ended. This could facilitate the evaluation method-
ologies, because we have train and test sets as large as desired. The problem
we address in this work is: Is this sampling strategy viable in the streaming
scenario?

In this work we argue that the answer is no. Two aspects, in the emerging
applications and learning algorithms that have strong impact in the evalua-
tion methodologies are the continuous evolution of decision models and the
non-stationary nature of data streams. The approach we propose is based on
sequential analysis. Sequential analysis refers to the body of statistical theory
and methods where the sample size may depend in a random manner on the
accumulating data (Ghosh and Sen, 1991).

5.2 Learning from Data Streams

Hulten and Domingos (2001) identify desirable properties of learning sys-
tems for efficient mining continuous, high-volume, open-ended data streams:

• Require small constant time per data example;

• Use fix amount of main memory, irrespective to the total number of
examples;

• Built a decision model using a single scan over the training data;

• Generating a anytime model independent from the order of the exam-
ples;

• Ability to deal with concept drift;

• For stationary data, ability to produce decision models that are nearly
identical to the ones we would obtain using a batch learner.

From this desiderata, we can identify three dimensions that influence the
learning process: space – the available memory is fixed, learning time – process
incoming examples at the rate they arrive, and generalization power – how
effective the model is at capturing the true underlying concept. In this work
we focus in the generalization power of the learning algorithm, although we
recognize that the two first dimensions have direct impact in the generalization
power of the learned model.

We are in presence of a potentially infinite number of examples. Is this
fact relevant for learning? Do we need so many data points? Sampling a large
training set is not enough? Figure 5.1 intend to provide useful information to

Evaluating Streaming Algorithms 67

Figure 5.1: Performance evolution of VFDT in a web-mining problem. Ac-
curacy increases with increasing number of training examples.

answer these questions, showing the accuracy’s evolution of VFDT in a web-
mining problem. One observes, in this particular problem, a rapid increase of
the accuracy with the number of examples; using more than 1e+07 examples
will not affect the accuracy, it will remain stable near 80%.

The fact that decision models evolve over time has strong implications
in the evaluation techniques assessing the effectiveness of the learning pro-
cess. Another relevant aspect is the resilience to overfitting: each example is
processed once.

A brief look at the stream mining literature shows the diversity of eval-
uation methods. Table 5.1 presents a brief resume of evaluation methods.
The algorithms under analysis are described in Domingos and Hulten (2000);
Hulten et al. (2001); Gama et al. (2003, 2004); Ferrer-Troyano et al. (2005);
Kirkby (2008); Castillo and Gama (2005), and are presented in that order.

5.3 Evaluation Issues

A key point in any intelligent system is the evaluation methodology. Learn-
ing systems generate compact representations of what is being observed. They
should be able to improve with experience and continuously self-modify their

68 Knowledge Discovery from Data Streams

Work Evaluation Memory Examples Drift
Method Management Data Train Test

VFDT holdout Yes Artif 1M 50k No
holdout Yes Real 4M 267k No

CVFDT holdout Yes Artif 1M Yes Yes
VFDTc holdout No Artif 1M 250k No
UFFT holdout No Artif 1.5M 250k Yes
FACIL holdout Yes Artif 1M 100k Yes
MOA holdout Yes Artif 1G No
ANB Prequential No Artif Yes

Table 5.1: Resume of evaluation methods in stream mining literature.

internal state. Their representation of the world is approximate. How approx-
imate is the representation of the world? Evaluation is used in two contexts:
inside the learning system to assess hypothesis, and as a wrapper over the
learning system to estimate the applicability of a particular algorithm in a
given problem. Three fundamental aspects are:

• What are the goals of the learning task?

• Which are the evaluation metrics?

• How to design the experiments to estimate the evaluation metrics?

For predictive learning tasks (classification and regression) the learning
goal is to induce a function ŷ = f(~x). The most relevant dimension is the

generalization error. It is an estimator of the difference between f̂ and the
unknown f , and an estimate of the loss that can be expected when applying
the model to future examples.

5.3.1 Design of Evaluation Experiments

One aspect in the design of experiments that has not been conveniently
addressed, is that learning algorithms run in computational devices that have
limited computational power. For example, existing learning algorithms as-
sume that data fits in memory; a prohibit assumption in the presence of
open-ended streams. This issue becomes much more relevant when data analy-
sis must be done in situ. An illustrative example is the case of sensor networks,
where data flows at high-speed and computational resources are quite limited.

Very few algorithms address the bounded memory constrain. A notable
exception is VFDT (Domingos and Hulten, 2000) that can save memory by
freezing less promising leaves whenever memory reaches a limit. VFDT monitor
the available memory and prune leaves (where sufficient statistics are stored)
depending on recent accuracy. Kirkby (2008) presents an interesting frame-
work to evaluate learning algorithms under memory constrains. The author

Evaluating Streaming Algorithms 69

proposes three environments using increasing memory, for evaluating stream
mining algorithms:

• Sensor environment: hundreds of Kbytes;

• Handheld computers: tens of Mbytes;

• Server computers: several Gbytes.

The memory management is more relevant for non-parametric decision models
like decision trees or support vector machines because the number of free
parameters evolve with the number of training examples. For other type of
models, like linear models that typically depend on the number of attributes
memory management is not so problematic in the streaming context because
the size of the model does not depend on the number of examples. Kirkby
(2008) defend that general purpose streaming algorithms should be evaluated
in the three mentioned scenarios.

In batch learning using finite training sets, cross-validation and variants
(leave-one-out, bootstrap) are the standard methods to evaluate learning sys-
tems. Cross-validation is appropriate for restricted size datasets, generated
by stationary distributions, and assuming that examples are independent. In
data streams contexts, where data is potentially infinite, the distribution gen-
erating examples and the decision models evolve over time, cross-validation
and other sampling strategies are not applicable. Research communities and
users need other evaluation strategies.

5.3.2 Evaluation Metrics

To evaluate a learning model in a stream context, two viable alternatives,
presented in the literature, are:

• Holdout an independent test set. Apply the current decision model to
the test set, at regular time intervals (or set of examples). The loss
estimated in the holdout is an unbiased estimator.

• Predictive Sequential: Prequential (Dawid, 1984), where the error of a
model is computed from the sequence of examples. For each example
in the stream, the actual model makes a prediction based only on the
example attribute-values. The prequential-error is computed based on an
accumulated sum of a loss function between the prediction and observed
values:

Si =

n∑
1

L(yi, ŷi)

.

We should point out that, in the prequential framework, we do not need
to know the true value yi, for all points in the stream. The framework can be

70 Knowledge Discovery from Data Streams

used in situations of limited feedback, by computing the loss function and Si
for points where yi is known.

The mean loss is given by: Mi = 1
n ×Si. For any loss function, we can esti-

mate a confidence interval for the probability of error, Mi± ε, using Chernoff
bound (Chernoff, 1952):

εc =

√
3× µ̄
n

ln(2/δ),

where δ is a user defined confidence level. In the case of bounded loss functions,
like the 0-1 loss, the Hoeffding bound (Hoeffding, 1963) can be used:

εh =

√
R

2n
ln

(
2

δ

)
,

where R is the range of the random variable. Both bounds use the sum of inde-
pendent random variables and give a relative or absolute approximation of the
deviation of X from its expectation. They are independent of the distribution
of the random variable.

5.3.2.1 Error Estimators using a Single Algorithm and a Single
Dataset

Prequential evaluation provides a learning curve that monitors the evolu-
tion of learning as a process. Using holdout evaluation, we can obtain a similar
curve by applying, at regular time intervals, the current model to the holdout
set. Both estimates can be affected by the order of the examples. Moreover, it
is known that the prequential estimator is pessimistic: under the same condi-
tions it will report somewhat higher errors (see Figure 5.2). The prequential
error estimated over all the stream might be strong influenced by the first part
of the error sequence, when few examples has been used for train the classifier.
This observation leads to the following hypothesis: compute the prequential
error using a forgetting mechanism. This might be achieved either using a
time window of the most recent observed errors, or using fading factors.

Intuitively, the prequencial error using fading factors is computed as: Ei =
Si
N where S1 = L1 and Si = Li + α × Si−1. Nevertheless, Ei converges to 0
when N tends to +∞. We use a correction factor in the denominator of the
equation:

Ei =
Si
Bi

=
Li + α× Si−1

ni + α×Bi−1

where ni is the number of examples used to compute Li. When the loss Li is
computed for every single example, ni = 1 .

5.3.2.2 An Illustrative Example.

The objective of this experiment is to study convergence properties of
the prequential statistics using sliding window error estimates. The learning

Evaluating Streaming Algorithms 71

Figure 5.2: Comparison of error evolution as estimated by holdout and pre-
quential strategies, in a stationary stream (Waveform data set). The learning
algorithm is VFDT.

algorithm is VFDT as implemented in VFML (Hulten and Domingos, 2003).
The experimental work has been done using the Waveform (Asuncion and
Newman, 2007) dataset, because the Bayes-error is known: 14%. This is a
three class problem defined by 21 numerical attributes.

Figure 5.3 plots the holdout error, the prequential error, and the pre-
quential error estimated using sliding-windows of different size. All the plots
are means from 30 runs of VFDT on datasets generated with different seeds.
The most relevant fact is that the window-size does not matter too much:
the prequential error estimated over a sliding-window always converge fast to
the holdout estimate. Figure 5.3 (left) plots the holdout error, the prequen-
tial error, the prequential error estimated using sliding-window (50k), and the
prequential error estimated using fading factor (0.975). Again, the prequential
error estimated using fading factor converges fast to holdout estimate.

5.3.3 Comparative Assessment

In this section we discuss methods to compare the performance of two
algorithms (A and B) in a stream. Our goal is to distinguish between random
and non-random differences in experimental results.

Let SAi and SBi be the sequences of the prequential accumulated loss for
each algorithm. A useful statistic that can be used with almost any loss func-

tion is: Qi(A,B) = log(
SAi
SBi

). The signal of Qi is informative about the relative

performance of both models, while its value shows the strength of the differ-
ences. In a experimental study using real data from a electrical load-demand
forecast problem, plotted in Figure 5.4, Qi reflects the overall tendency but
exhibit long term influences and is not able to fast capture when a model

72 Knowledge Discovery from Data Streams

Figure 5.3: Comparison of prequential error evolution between holdout, pre-
quential and prequential over sliding windows. Left plot presents the evolution
of prequential error estimated using fading factors and sliding windows.

is in a recovering phase. Two viable alternatives are sliding windows, with
the known problems of deciding the window-size, and fading-factors. Both
methods have been used for blind adaptation, e.g. without explicit change
detection, of decision models in drift scenarios (Klinkenberg, 2004; Koychev,
2000). The formula for using fading factors with the Qi statistic is:

Qαi (A,B) = log(
Li(A) + α× SAi−1

Li(B) + α× SBi−1

).

It is interesting to observe that these two alternatives exhibit similar plots
(see Figure 5.5).

The fading factors are multiplicative, corresponding to an exponential for-
getting. At time-stamp t the weight of example t−k is αk. For example, using
α = 0.995 the weight associated with the first term after 3000 examples is
2.9E − 7. In general, assuming that we can ignore the examples with weights
less than ε, an upper bound for k (e.g. the set of “important” examples)
is log(ε)/log(α). The fading factors are memoryless, an important property
in streaming scenarios. This is a strong advantage over sliding-windows that
require maintaining in memory all the observations inside the window.

5.3.3.1 The 0− 1 loss function

For classification problems, one of the most used tests is the McNemar
test1. To be able to apply this test we only need to compute two quantities
ni,j : n0,1 denotes the number of examples misclassified by A and not by B,

1We do not argue that this is the most appropriate test for comparing classifiers. Demsar
(2006) presents an in depth analysis on statistical tests to compare classifiers in batch
scenario.

Evaluating Streaming Algorithms 73

Figure 5.4: Comparison between two different neural-networks topologies in
a electrical load-demand problem. The loss function is the mean-squared error.
The figure plots the evolution of the Qi statistic. The signal of Qi is always
negative, illustrating the overall advantage of one method over the other.

whereas n1,0 denotes the number of examples misclassified by B and not by A.
The contingency table can be updated on the fly, which is a desirable property
in mining high-speed data streams. The statistic

M = sign(n0,1 − n1,0)× (n0,1 − n1,0)2

n0,1 + n1,0

has a χ2 distribution with 1 degree of freedom. For a confidence level of 0.99,
the null hypothesis is rejected if the statistic is greater than 6.635 (Dietterich,
1996).

5.3.3.2 Illustrative Example.

We have used the dataset SEA concepts (Street and Kim, 2001), a bench-
mark problem for concept drift. Figure 5.6 (top panel) shows the evolution
of the error rate of two naive-Bayes variants: a standard one and a variant
that detects and relearn a new decision model whenever drift is detected. The
McNemar test was performed to compare both algorithms. The bottom panel
shows the evolution of the statistic test computed over the entire stream. As
it can be observed, once this statistic overcomes the threshold value 6.635, it
never decreases bellow it, which is not informative about the dynamics of the
process under study. Again, the problem is the long term influences verified
with the Qi statistic. It is well known, that the power of statistical tests, the
probability of signaling differences where they do not exist, are highly affected
by data length. Data streams are potentially unbounded, which might increase
the Type II errors.

74 Knowledge Discovery from Data Streams

Figure 5.5: Plot of the Qi statistic over a sliding window of 250 examples.
The last figure plots the Qi statistic using a fading factor of α = 0.995.

To overthrown this drawback, and since the fading factors are memoryless
and proves to exhibit similar behaviors to sliding windows, we compute this
statistic test using different windows size and fading factors. Figure 5.7 illus-
trates a comparison on the evolution of a signed McNemar statistic between
the two algorithms, computed over a sliding window of 1000 and 100 exam-
ples (on the top panel) and computed using a fading factor with α = 0.999
and α = 0.99 (on the bottom panel). It can be observed that in both cases,
the statistics reject the null hypothesis almost at the same point. The use of
this statistical test to compare stream-learning algorithms shows itself feasi-
ble by applying sliding-window or fading-factors techniques. Nevertheless, for
different forgetting factors we got different results about the significance of
the differences.

5.3.4 Evaluation Methodology in Non-Stationary Environ-
ments

An additional problem of the holdout method comes from the non-stationary
properties of data streams. Non-stationarity or concept drift means that the
concept about which data is obtained may shift from time to time, each time
after some minimum permanence. The permanence of a concept is designated
as context and is defined as a set of consecutive examples from the stream
where the underlying distribution is stationary. Without loss of generality,
we restrict this work to methods for explicit change detection because they
are informative about the dynamics of the process generating data. In that
case, some useful evaluation metrics include: i) probability of false alarms; ii)
probability of true alarms; ii) delay in detection.

Evaluating Streaming Algorithms 75

Figure 5.6: The evolution of signed McNemar statistic between two algo-
rithms. Vertical dashed lines indicates drift in data, and vertical lines indi-
cates when drift was detected. The top panel shows the evolution of the error
rate of two naive-Bayes variants: a standard one and a variant that detect and
relearn a new model whenever drift is detected. The bottom panel shows the
evolution of the signed McNemar statistic computed for these two algorithms.

5.3.4.1 The Page-Hinkley Algorithm

Several tests for change detection have been presented in the literature (Bas-
seville and Nikiforov, 1993; Widmer and Kubat, 1996; Klinkenberg, 2004; Koy-
chev, 2000; Gama et al., 2004). One of the most referred is the Page-Hinkley
test (PH) (described in Section 3.2.2.2), a sequential analysis technique typi-
cally used for monitoring change detection (Page, 1954) in signal processing.

5.3.4.2 Illustrative Example.

Figure 5.8 illustrates how PHT works. The top figure plots the trace of
the prequential error of a naive-Bayes classifier (using data from the first
concept of the SEA dataset (Street and Kim, 2001)). A concept drift occurs
at point 15000 which leads to an error increment. The PHT allows us to
detect the significant increase of the error. The bottom figure represents the
evolution of the statistic test PHt and the detection threshold (λ). As it can
be observed, the PH statistic test follows the increase of the error rate. The
λ parameter should guarantee that the algorithm, while is resilient to false
alarms, can detect and react to changes as soon as they occur, decreasing
the detection delay time. Controlling this detection threshold parameter we
establish a tradeoff between the false positive alarms and the miss detections.

As described before in this book the use of fading factors, as a smooth
forgetting mechanism, may be an advantage in change detection algorithms.
In a drift scenario, as new data is available, older observations are less useful.
Using fading factors, e.g. attributing less weight to past observations, the
change detection algorithm will focus in the most recent data, which in a drift
scenario may lead to fast detections. For detection purposes, we monitor the

76 Knowledge Discovery from Data Streams

Figure 5.7: The evolution of signed McNemar statistic between the two al-
gorithms. The top panel shows the evolution of the signed McNemar statistic
computed over a sliding window of 1000 and 100 examples and the bottom
panel shows the evolution of the signed McNemar statistic computed using a
Fading Factor with α = 0.999 and α = 0.99, respectively. The dotted line is
the threshold for a significance level of 99%. For different forgetting factors
we got different results about the significance of the differences.

evolution of the error rate of a naive-Bayes classifier (using again the SEA
concepts dataset). The formula used to embed fading factors in the Page-
Hinkley test is: mT = α × mT−1 + (xt − x̂T − δ). To detect increases in
the error rate (due to drifts in data) we compute the PHT, setting δ and λ
parameters to 10−3 and 2.5, respectively. Figure 5.9 shows the delay time for
this test: (a) without fading factors, (b) and (c) using different fading factors.
The advantage of the use of fading factors in the PHT can be easily observed
in this figure. The exponential forgetting results in small delay times without
compromise miss detections.

We can control the rate of forgetting using different fading factors; as
close to one is the α value of the fading factor the less it will forget data. We
evaluate the PHT using different fading factors to assess the delay time in
detection. Figure 5.9 (b) and c)) shows the delay time in detection of concept
drifts. We had used the PHT and different fading factors (α = 1 − 10−5

and α = 1 − 10−4, respectively) to detect these changes. Table 5.2 presents

Evaluating Streaming Algorithms 77

Figure 5.8: Experiments in SEA dataset illustrating the first drift at point
15000. The top figure shows the evolution of the naive-Bayes error rate. The
bottom figure represents the evolution of the Page-Hinkley test statistic and
the detection threshold λ.

Fading Factors (1− α)
Drifts 10−4 10−5 10−6 10−7 10−8 0
1st drift 1045 (1) 1609 2039 2089 2094 2095
2nd drift 654 (0) 2129 2464 2507 2511 2511
3rd drift 856 (1) 1357 1609 1637 2511 1641

Table 5.2: Delay times in drift scenarios using different fading factors. We
observe false alarms only for 1 − α = 10−4. The number of false alarms is
indicated in parenthesis.

the delay time in detection of concept drifts in the same dataset used in
figure 5.9. As the fading factor increases, one can observe that the delay time
also increases, which is consistent with the design of experiments. As close to
one is the α value of the fading factor the greater is the weight of the old data,
which will lead to higher delay times. The feasible values for α are between
1− 10−4 and 1− 10−8 (with α = 1− 10−8 the delay times are not decreased
and with α = 1 − 10−4 the delay time decreases dramatically but with false
alarms). We may focus on the resilience of this test to false alarms and on its
ability to reveal changes without miss detections. The results obtained with
this dataset were very consistent and precise, supporting that the use of fading
factors improves the accuracy of the Page-Hinkley test.

5.4 Lessons Learned and Open Issues

Assessing machine learning algorithms is one of the most relevant and
difficult problems, even in the case of static models. The prequential statistic is

78 Knowledge Discovery from Data Streams

Figure 5.9: The evolution of the error rate and the delay times in drift
detection using the Page-Hinkley test and different fading factors. The top
panel shows the delay times using the PH test without fading factors. The
middle and bottom panels show the delay times using fading factors with
α = 1− 10−5 and α = 1− 10−4, respectively.

a general methodology to evaluate learning algorithms in streaming scenarios,
where learning requires dynamic models that evolves over time. The lessons
learned in this chapter are:

• The prequential error allows us to monitor the evolution of learning
process;

• The prequential error requires some sort of forgetting mechanism, like
sliding windows or fading factors;

Evaluating Streaming Algorithms 79

• Both forgetting techniques converge towards the holdout estimate;

• Fading factors are faster and memory less approach;

• Forgetting techniques are useful in statistical hypothesis testing, reduc-
ing type II errors;

• Forgetting techniques are useful in change detection. They might im-
prove detection rates, maintaining the capacity of being resilient to false
alarms when there are no drifts.

The main problem in the evaluation methods when learning from dynamic
and time-changing data streams consists of monitoring the evolution of the
learning process. In this work we defend the use of Predictive Sequential er-
ror estimates using fading factors to assess performance of stream learning
algorithms in presence of non-stationary data. The prequential method is a
general methodology to evaluate learning algorithms in streaming scenarios.
In those applications where the observed target value is available later in time,
the prequential estimator can be implemented inside the learning algorithm.
This opens interesting opportunities: the system would be capable of monitor-
ing the evolution of the learning process itself and self-diagnosis the evolution
of it. In this chapter we focus on loss as performance criteria. Nevertheless,
other criteria, imposed by data streams characteristics, must be taken into ac-
count. Memory is one of the most important constrains. Learning algorithms
run in fixed memory. They need to manage the available memory, eventually
discarding parts of the required statistics or parts of the decision model. We
need to evaluate the memory usage over time, and its the impact in accuracy.

5.5 Notes

Performance assessment, design of experimental work, and model selection,
are fundamental topics in Science in general and in Statistics (Bhattacharyya
and Johnson, 1977), Artificial Intelligence (Cohen, 1995), Machine Learn-
ing (Mitchell, 1997), Data Mining (Hastie et al., 2000), in particular. The topic
of model selection (Schaffer, 1993) is of great interest by oblivious arguments.
Some general methods include Occam’s razor (Domingos, 1998), minimum de-
scription length (Grünwald, 2007), Bayesian information score (Akaike, 1974),
risk minimization (Vapnik, 1995), etc. A theoretical comparison between some
of these methods appear in (Kearns et al., 1997). Some referential works in
the area of Machine Learning, with high criticism to some usual practices,
appear in (Dietterich, 1996; Salzberg, 1997), and more recently in (Demsar,
2006). More advanced topics in evaluation and model selection include the
receiver operating characteristic, ROC curves and the AUC metric (Hand and
Till, 2001; Fürnkranz and Flach, 2005).

80 Knowledge Discovery from Data Streams

The computational learning theory community has studied, analyzed and
developed several on-line learning algorithms. Most of these works have the
purpose of characterizing their theoretical limitations and possibilities. A re-
cent book, Cesa-Bianch and Lugosi (2006), presents a relevant discussion on
these topics.

Chapter 6

Clustering from Data Streams

Roughly speaking, clustering is the process of grouping objects into different
groups, such that the common properties of data in each subset are high,
and between different subsets are low. Clustering methods are widely used
in data mining. They are either used to get insight into data distribution or
as a preprocessing step for other algorithms. The most common approaches
use distance between examples as similarity criteria. These approaches require
space that is quadratic in the number of observations, which is prohibitive in
the data stream paradigm.

The data stream clustering problem is defined as to maintain a continu-
ously consistent good clustering of the sequence observed so far, using a small
amount of memory and time. The issues are imposed by the continuous ar-
riving data points, and the need to analyze them in real time. These char-
acteristics require incremental clustering, maintaining cluster structures that
evolve over time. Moreover, the data stream may continuously evolve, and
new clusters might appear, other, disappear, reflecting the dynamics of the
stream1.

6.1 Introduction

Major clustering approaches in traditional cluster analysis include:

• Partitioning algorithms: construct a partition of a set of objects into k
clusters, that minimize an objective function (e.g. the sum of squares dis-
tances to the centroid representative). Examples include k-means (Farn-
strom et al., 2000), and k-medoids;

• Micro-clustering algorithms: divide the clustering process into two phases,
where the first phase is online and summarizes the data stream in local
models (micro-clusters) and the second phase generates a global clus-
ter model from the micro-clusters. Examples of these algorithms include
BIRCH (Zhang et al., 1996) and CluStream (Aggarwal et al., 2003);

1Based in join work with Pedro Pereira Rodrigues.

81

82 Knowledge Discovery from Data Streams

• Density-based algorithms are based on connectivity between regions and
density functions. This type of algorithms find clusters of arbitrary
shapes, e.g., DBSCAN (Birant and Kut, 2007), and OPTICS (Peter Kriegel
et al., 2003);

• Grid-based algorithms: based on a multiple-level granularity structure.
View instance space as grid structures, e.g., Fractal Clustering (Bar-
bará and Chen, 2000), and STING (Hinneburg and Keim, 1999);

• Model-based algorithms: find the best fit of the model to all the clus-
ters. Good for conceptual clustering, e.g., COBWEB (Fisher, 1987), and
SOM (Kaski and Kohonen, 1994).

Barbará (2002) identify four basic requirements in data stream clustering
algorithms: i) Compactness of representation; ii) Fast, incremental processing
of new data points; iii) Tracking cluster changes; iv) Clear and fast identifi-
cation of outliers.

In a seminal paper, Aggarwal et al. (2003) separate the clustering process
into two steps. The first step works on-line and generates micro-clusters. This
step requires efficient process for storing summary statistics. The second step
works off-line, and generates the macro-clusters. It uses the summary statistics
to provide clusters as per user-requirement It is very efficient since it uses only
the micro-clusters, allowing users to explore different aggregations and track
clusters evolution.

As a final recommendation, that might be used in all the other tasks,
Barbará (2002) wrote: “Successfully applying the techniques to real data sets:
This point requires the collaboration of data mining researchers with domain
experts, in order to carefully evaluate the results and determine if they produce
usable knowledge for the application at hand”.

6.2 Clustering Examples

Clustering examples is the most common task in unsupervised learning.
The standard techniques are partitioning clustering, that requires knowing
the number of desired clusters in advance; and hierarchical clustering that
generate a hierarchy of embedded clusters.

6.2.1 Basic Concepts

A powerful idea in clustering from data streams is the concept of cluster
feature - CF. A cluster feature, or micro-cluster, is a compact representation
of a set of points. A CF structure is a triple (N,LS, SS), used to store the
sufficient statistics of a set of points:

Clustering from Data Streams 83

• N is the number of data points;

• LS is a vector of the same dimension of data points that store the linear
sum of the N points;

• SS is a vector of the same dimension of data points that store the square
sum of the N points.

The properties of cluster features are:

• Incrementality
If a point x is added to the cluster, the sufficient statistics are updated
as follows:

LSA ← LSA + x

SSA ← SSA + x2

NA ← NA + 1

• Additivity
if A1 and A2 are disjoint sets, merging them is equal to the sum of their
parts. The additive property allows us to merge sub-clusters incremen-
tally.

LSC ← LSA + LSB

SSC ← SSA + SSB

NC ← NA +NB .

A CF entry has sufficient information to calculate the norms

L1 =

n∑
i=1

|xai − xbi |

L2 =

√√√√ n∑
i=1

(xai − xbi)2

and basic measures to characterize a cluster:

• Centroid, defined as the gravity center of the cluster:

~X0 =
LS

N

• Radius, defined as the average distance from member points to the
centroid:

R =

√∑N
1 (~xi − ~X0)2

N
.

84 Knowledge Discovery from Data Streams

Algorithm 10: The Leader Clustering Algorithm.

input : X: A Sequence of Examples xi
δ: Control Distance parameter.

output: Centroids of the k Clusters
begin

Initialize the set of centroids C = x1

foreach xi ∈ X do
Find the cluster cr whose center is close to xi
if d(xi, Cr) < δ then

C = C
⋃
xi

6.2.2 Partitioning Clustering

6.2.2.1 The Leader Algorithm

The simplest single-pass partitioning algorithm is known as the Leader (Spath,
1980) clustering algorithm. It uses a user specified distance threshold that
specifies the maximum allowed distance between an example and a centroid.
At any step, the algorithm assigns the current example to the most similar
cluster (the leader) if their distance is below the threshold. Otherwise the ex-
ample itself is added as a leader. The Leader algorithm is one-pass and fast
algorithm, and does not require prior information about the number of clus-
ters. However, it is an unstable algorithm; its performance depends too much
on the order of the examples and a correct guess of the distance threshold
which requires prior knowledge.

6.2.2.2 Single Pass k-Means

k-means is the most widely used clustering algorithm. It constructs a par-
tition of a set of objects into k clusters, that minimize some objective function,
usually a squared error function, which imply round-shape clusters. The in-
put parameter k is fixed and must be given in advance that limits its real
applicability to streaming and evolving data.

Farnstrom et al. (2000) proposes a Single pass k-Means algorithm. The
main idea is to use a buffer where points of the dataset are kept in a compressed
way. The data stream is processed in blocks. All available space on the buffer
is filled with points from the stream. Using these points, find k centers such
that the sum of distances from data points to their closest center is minimized.
Only the k centroids (representing the clustering results) are retained, with
the corresponding k cluster features. In the following iterations, the buffer is
initialized with the k-centroids, found in previous iteration, weighted by the
k cluster features, and incoming data points from the stream. The Single pass
k-Means is incremental improving its solution given additional data. It uses a
fixed size buffer and can be described in Algorithm 11. Farnstrom et al. (2000)

Clustering from Data Streams 85

Algorithm 11: Algorithm for Single Pass k-Means Clustering.

input : S: A Sequence of Examples
k: Number of desired Clusters.

output: Centroids of the k Clusters
begin

Randomly initialize cluster means.;
Each cluster has a discard set that keeps track of the sufficient
statistics.;
while TRUE do

Fill the buffer with examples ;
Execute iterations of k-means on points and discard set in the
buffer, until convergence. ;
/* For this clustering, each discard set is treated

like a regular point weighted with the number of

points in the discard set. */

;
foreach group do

update sufficient statistics of the discard set with the
examples assigned to that group;

Remove points from the buffer;

conclude “The main positive result is that the single pass k-means algorithm,
with a buffer of size 1% of the input dataset, can produce clusters of almost
the same quality as the standard multiple pass k-means, while being several
times faster.”.

The Very Fast k-means algorithm (VFKM) (Domingos and Hulten, 2001)
uses the Hoeffding bound (Hoeffding, 1963) to determine the number of ex-
amples needed in each step of a k-means algorithm. VFKM runs as a sequence of
k-means runs, with increasing number of examples until the Hoeffding bound
is satisfied.

Guha et al. (2003) present a analytical study on k-median clustering data
streams. The proposed algorithm makes a single pass over the data stream
and uses small space. It requires O(nk) time and O(nε) space where k is the
number of centers, n is the number of points and ε < 1. They have proved
that any k-median algorithm that achieves a constant factor approximation
cannot achieve a better run time than O(nk).

6.2.3 Hierarchical Clustering

One major achievements in this area of research was the BIRCH (Balanced
Iterative Reducing and Clustering using Hierarchies) system (Zhang et al.,
1996). The BIRCH system compress data, building a hierarchical structure the

86 Knowledge Discovery from Data Streams

Figure 6.1: The Clustering Feature Tree in BIRCH. B is the maximum number
of CFs in a level of the tree.

CF-tree, where each node is a tuple (Clustering Feature) that contain the suf-
ficient statistics describing a set of data points, and compress all information
of the CFs below in the tree. BIRCH only works with continuous attributes. It
was designed for very large data sets, explicitly taking into account time and
memory constraints. For example, not all data-points are used for clustering,
dense regions of data points are treated as sub-clusters. BIRCH might scan
data twice to refine the CF-tree, although it can be used with a single scan of
data. It proceeds in two phases. The first phase scans the database to build
an initial in-memory CF tree, a multi-level compression of the data that tries
to preserve the inherent clustering structure of the data (see Figure 6.1). The
second phase uses an arbitrary clustering algorithm to cluster the leaf nodes
of the CF-tree.

BIRCH requires two user defined parameters: B the branch factor or the
maximum number of entries in each non-leaf node; and T the maximum di-
ameter (or radius) of any CF in a leaf node. The maximum diameter T defines
the examples that can be absorbed by a CF. Increasing T , more examples can
be absorbed by a micro-cluster and smaller CF-Trees are generated. When
an example is available, it traverses down the current tree from the root, till
finding the appropriate leaf. At each non-leaf node, the example follow the
closest-CF path, with respect to norms L1 or L2. If the closest-CF in the leaf
cannot absorb the example, make a new CF entry. If there is no room for new
leaf, split the parent node. A leaf node might be expanded due to the con-
strains imposed by B and T . The process consists of taking the two farthest
CFs and creates two new leaf nodes. When traversing backup the CFs are
updated.

BIRCH tries to find the best groups with respect to the available memory,
while it minimizes the amount of input and output. The CF-tree grows by
aggregation, getting with only one pass over the data a result of complexity
O(N). However, Sheikholeslami et al. (1998) show that it does not perform

Clustering from Data Streams 87

well in the presence of non-spherical clusters.

6.2.4 Micro Clustering

An interesting extension of BIRCH to data streams is the CluStream sys-
tem (Aggarwal et al., 2003). As in BIRCH, the system is divided in two compo-
nents: one on-line and another off-line. Micro-clusters are locally kept, having
statistical information of data and time stamps. The CF are extended with
temporal information (CFT): the sum of time-stamps, and the sum of the
squares of time stamps. For each incoming data point, the distance to the
centroids of existing CFs, are computed. The data point is absorbed by an
existing CF if the distance to the centroid falls within the maximum bound-
ary of the CF. The maximum boundary is defined as a factor t of the radius
deviation of the CF; Otherwise, the data point starts a new micro-cluster.
CluStream only maintains the most recent q micro-clusters. Whenever a new
micro-cluster is generated, the oldest one is deleted or merged with the most
close cluster.

CluStream can generate approximate clusters for any user defined time
granularity. This is achieved by storing the CFT at regular time intervals,
referred to as snapshots. Suppose the user wants to find clusters in the stream
based on a history of length h. The off-line component can analyze the snap-
shots stored at the snapshots t, the current time, and (t − h) by using the
addictive property of CFT. The important problem is when to store the snap-
shots of the current set of micro-clusters. Two examples of time frames are
presented in Figure 2.4 (see Chapter 2). For example, the natural time frame
stores snapshots each quarter, 4 quarters are aggregated in hours; 24 hours
are aggregated in days, etc. The aggregation level is domain dependent and
explores the additive property of CFT.

Aggarwal, Han, Wang, and Yu (2003) propose to store snapshots in a
pyramidal form. Snapshots are classified into orders varying from 1 to log(t),
where t is the current time-stamp. The order of a particular class of snapshots
defines the level of granularity at which the snapshots are maintained. The
order of a snapshot is obtained as follows. Given a positive integer α a snapshot
is of order i if its time-stamp is divisible by αi. We note that a snapshot might
have several orders. For example, assume α = 2, the snapshot taken at time-
stamp 8, has orders 0, 1, 2, and 3. The system only stores the α + 1 most
recent snapshots of order i. The pyramidal framework, guarantees that:

• The maximum order of a snapshot stored at time t is logα(t);

• The maximum number of snapshots maintained at time t is (α + 1) ×
logα(t);

• For any time window of length h, at least one stored snapshot can be
found within 2× h units of the current time.

88 Knowledge Discovery from Data Streams

6.2.4.1 Discussion

The idea of dividing the clustering process into two layers, where the first
layer generate local models (micro-clusters) and the second layer generates
global models from the local ones, is a powerful idea that has been used
elsewhere. Three illustrative examples are:

The Clustering on Demand framework Dai et al. (2006) a system for clus-
tering time series. The first phase consists of one data scan for online statistics
collection and compact multi-resolution approximations, which are designed
to address the time and the space constraints in a data stream environment.
The second phase applies a clustering algorithm over the summaries. Fur-
thermore, with the multi-resolution approximations of data streams, flexible
clustering demands can be supported. The Clustering Using REpresentatives
system (Guha et al., 1998), a hierarchical algorithm that generate partial clus-
ters from samples of data in a first phase, and in the second phase cluster the
partial clusters. It uses multiple representative points to evaluate the distance
between clusters, being able to adjust to arbitrary shaped clusters. The On
Demand Classification of Data Streams algorithm (Aggarwal et al., 2006) uses
the two-layer model for classification problems. The first layer generates the
micro-clusters as in CluStream, with the additional information of class-labels.
A labeled data point can only be added to a micro-cluster belonging to the
same class.

6.2.4.2 Monitoring Cluster Evolution

Promising research lines are tracking changes in clusters. Spiliopoulou et al.
(2006) presents system MONIC, for detecting and tracking change in clusters.
MONIC assumes that a cluster is an object in a geometric space. It encom-
passes changes that involve more than one cluster, allowing for insights on
cluster change in the whole clustering. The transition tracking mechanism is
based on the degree of overlapping between the two clusters. The concept of
overlap between two clusters X and Y, is defined as the normed number of
common records weighted with the age of the records. Assume that cluster X
was obtained at time t1 and cluster Y at time t2. The degree of overlapping
between the two clusters is given by:

overlap(X,Y) =

∑
a∈X∩Y age(a, t2)∑
x∈X age(x, t2)

The degree of overlapping allows inferring properties of the underlying data
stream. Cluster transition at a given time point is a change in a cluster discov-
ered at an earlier timepoint. MONIC consider transitions Internal and external
transitions, that reflect the dynamics of the stream. Examples of cluster transi-
tions include: the cluster survives, the cluster is absorbed; a cluster disappears;
a new cluster emerges.

Clustering from Data Streams 89

Algorithm 12: Algorithm for Fractal Clustering: Initialization phase.

input : S: A Set S of Examples
k: A Distance Threshold k.

begin
Make k = 0;
Make d0 = d;
Randomly choose a point P in S.;
while S is not Empty do

Mark P as belonging to Cluster Ck;
Starting at P and in a recursive depth-first;
Find the nearest neighbor of P such that dist(P ′, P) < d;
if P ′ exist then

Put P ′ in Cluster Ck;

Update the average distance between (d̂) pairs of points in
Ck;

Make d = d0 × d̂;

else
backtrack to the previous point in the search;

k = k + 1;

6.2.5 Grid Clustering

In grid clustering the instance space is divided into a finite and potentially
large number of cells that form a grid structure. All clustering operations
are performed in the grid structure which is independent on the number of
data points. Grid clustering is oriented towards spatio-temporal problems.
Illustrative examples that appear in the literature are (Wang et al., 1997;
Hinneburg and Keim, 1999; Park and Lee, 2004).

The Fractal Clustering (FC) system (Barbará and Chen, 2000) is a grid-
based algorithm that define clusters as sets of points that exhibit high self-
similarity. Note that, if the attributes of a dataset obey uniformity and inde-
pendence properties, its intrinsic dimension equals the embedding dimension
E. On the other hand, whenever there is a correlation between two or more
attributes, the intrinsic dimension of the dataset is accordingly lower. Thus,
D is always smaller than or equal to E. A dataset exhibiting fractal behavior
is self-similar over a large range of scales (Schroeder, 1991; Sousa et al., 2007).
The fractal behavior of self-similar real datasets leads to a distribution of dis-
tances that follows a power law (Faloutsos et al., 2000). Given a dataset S of
N elements and a distance function d(si, sj), the average number k of neigh-
bors within a distance r is proportional to r raised to D. Thus, the number
of pairs of elements within distance r (the pair-count PC(r)), follows a power

90 Knowledge Discovery from Data Streams

Figure 6.2: The box-counting plot: log-log plot n(r) versus r. D0 is the
Hausdorff fractal dimension.

law, where Kp is a proportionality constant:

PC(r) = Kp · rD (6.1)

Observe that by evaluating the distances between every two elements of a
dataset S we can plot a graph of PC(r) versus r to depict the distribution of
distances in S. For a self-similar (fractal) dataset, the distribution of distances
plotted in log-log scale is straight for a significant range of r, such that the
slope of the best-fitting line corresponds to the exponent in Equation 6.1
and closely approaches the intrinsic dimension D of the dataset (Sousa et al.,
2007). However, computing PC(r) for different values of r requires measuring
the distance between every pair of elements in S, that is, a O(N2) problem
where N is the number of elements in the dataset.

6.2.5.1 Computing the Fractal Dimension

The standard process to compute the fractal dimension is the box-counting
plot method. A set of N points, each with d dimensions, is embed in a d-
dimensional grid which cells have sizes of size r. Denote the frequency of
points that fall in the i-th cell by pi. The Hausdorff fractal dimension is given
by:

D0 = lim
r→0

log(n(r))

log(1/r)

If n(r) is the number of cells occupied by points in the data set, the plot of
n(r) versus r in log-log scales is called the box-counting plot. The negative
value of the slope of that plot corresponds to the Hausdorff fractal dimension.

6.2.5.2 Fractal Clustering

The Fractal Clustering system (Barbará and Chen, 2000) clusters data
incrementally, assigning the data points to the group in which that assign-
ment produces less fractal impact, the group in which the fractal dimension

Clustering from Data Streams 91

Algorithm 13: Algorithm for Fractal Clustering: Incremental step.

input : S: A Set of Examples that fit in memory
begin

foreach P ∈ S do
foreach i ∈ {1, . . . , k} do

C ′i ← Ci
⋃
{p};

Compute Fd(C
′
i);

Find î = mini(|Fd(C ′i)− Fd(Ci)|) ;
if |Fd(C ′î)− Fd(Cî)| > τ then

Discard p as noise ;

else
Place p in cluster Cî;

Algorithm 14: Algorithm for Fractal Clustering: Tracking cluster
changes.

input : S: A Set of Examples that fit in memory
begin

Initialize the count of successfully clustered points: r = 0;
foreach P ∈ S do

Use FC to cluster the point;
if P is not an outlier then

r ← r + 1

s← 3(1+ε)
ε2 × ln(2/δ);

if r ≤ s then
Initialize clusters using this set S of examples;

p← r
n ;

is less affected. The FC algorithm has two distinct phases. The initialization
phase, where the initial clusters are defined, each with sufficient points so that
the fractal dimension can be computed. The second phase incrementally adds
new points to the set of initial clusters. The initialization phase uses a tradi-
tional distance-based algorithm. The initialization algorithm is presented in
Algorithm 12. After the initial clustering phase, the incremental step (Algo-
rithm 13) process points in a stream. For each point, the fractal impact in clus-
ter Ci is computed as |Fd(C ′i)−Fd(Ci)|. The quantity mini(|Fd(C ′i)−Fd(Ci)|
is the Minimum Fractal Impact (MFI) of the point. If the MFI of the point
is larger than a threshold τ the point is rejected as outlier, otherwise it is
included in that cluster.

FC algorithm processes data points in batches. A key issues, whenever

92 Knowledge Discovery from Data Streams

new batch is available, is Are the current set of clusters appropriate for the
incoming batch? Barbará and Chen (2001) extended the FC algorithm to track
the evolution of clusters. The key idea is to count the number of successful
clustered points to guarantee high-probability clusters. Successful clustered
points are those with MFI greater than τ . Using Chernoff bound, the num-

ber of successful clustered points must be greater than 3(1+ε)
ε2 × ln(2/δ). The

algorithm to track the evolution of the clusters is presented in Algorithm 14.

6.3 Clustering Variables

Most of the work in incremental clustering of data streams has been con-
centrated on example clustering rather than variable clustering. Clustering
variables (e.g. time series) is a very useful tool for some applications, such
as sensor networks, social networks, electrical power demand, stock market,
etc. The distinction between clustering examples and clustering variables is
not an issue in batch clustering, since examples and variables can be easily
transposed. In the context of high-speed data streams, the standard matrix
transposition is not applicable. Transpose is a block operator. Clustering vari-
ables in data streams require different algorithms.

The basic idea behind clustering streaming time series is to find groups of
variables that behave similarly through time. This similarity is usually mea-
sured in terms of distances between time series, such as the Euclidean distance
or the correlation. However, when applying variable clustering to data streams,
a system can never be supported on total knowledge of available data, since
it is always evolving and multiple passes over the data are impossible. Thus,
these distances must be incrementally computed. Let X = 〈x1, x2, ..., xn〉 be
the complete set of n data streams and Xt = 〈xt1, xt2, ..., xtn〉 be the example
containing the observations of all streams xi at the specific time t. The goal of
an incremental clustering system for multiple time series is to find (and make
available at any time t) a partition P of those streams, where streams in the
same cluster tend to be more alike than streams in different clusters. In a
hierarchical approach to the problem, with the benefit of not having to previ-
ously define the target number of clusters, the goal is to continuously maintain
a structured hierarchy of clusters. An example partition could be defined as
P t = {{{x1}, {x3, x5}}, {x2, x4}}, stating that data streams x1, x3, x5 have
some similarity between them (more pronounced between x3 and x5), being
at the same time somehow dissimilar from x2 and x4. In fact, most of the
works published in clustering of data streams refer to example clustering and
very few works refer to variable clustering. One of the first works for this
task was presented by Rodrigues, Gama, and Pedroso (2008), with the system
ODAC.

Clustering from Data Streams 93

6.3.1 A Hierarchical Approach

In this section, we discuss the ODAC (Online Divisive-Agglomerative Clus-
tering) system. This is an algorithm for incremental clustering of streaming
time series that constructs a hierarchical tree-shaped structure of clusters us-
ing a top-down strategy. The leaves are the resulting clusters, and each leaf
groups a set of variables. The union of the leaves is the complete set of vari-
ables. The intersection of leaves is the empty set.

The system uses two major operators for expansion and aggregation of
the tree-based structure, based on the dynamics of the process generating
data. A cluster expansion occurs in stationary phases of the stream. When a
cluster receives more information we can define more detailed clusters. The
variables in a cluster are divided into two new clusters. In non-stationary
phases, whenever the stream correlation structure changes, the system can
detect that the correlation structure in the most recent data differs from the
one observed in the past. In that case the merge operator triggers and two
sibling clusters are merged into one.

ODAC continuously monitors the diameter of existing clusters. The diameter
of a cluster is the maximum distance between variables of that cluster. For
each existing cluster, the system finds the two variables defining the diameter
of that cluster. If a given heuristic condition is met on this diameter, the
system splits the cluster and assigns each of the chosen variables to one of the
new clusters, becoming this the pivot variable for that cluster. Afterwards, all
remaining variables on the old cluster are assigned to the new cluster which
has the closest pivot. New leaves start new statistics, assuming that only
forthcoming information will be useful to decide whether or not this cluster
should be split. Each node ck will then represent relations between streams
using examples Xik..sk , where ik is the time at which the node was created and
sk is the time at which the node was split (or current time t for leaf nodes).
This feature increases the system’s ability to cope with changing concepts
as, later on, a test is performed to check if the previously decided split still
represents the structure of variables. If the diameters of the children leaves are
greater than the parent’s diameter, then the previously taken decision may no
longer reflect the structure of data. The system merges the two leaves on the
parent node, restarting statistics. Algorithm 15 presents an overview of ODAC.
The forthcoming sections describe the inner core of the system.

6.3.1.1 Growing the Hierarchy

The system must analyze distances between incomplete vectors, possibly
without having any of the previous values available. Thus, these distances must
be incrementally computed. Since decisions must have statistical support, it
uses the Hoeffding bound, forcing the criterion - the distance measure - to be
scaled (Hoeffding, 1963). It uses the Pearson correlation coefficient (Pearson,
1896) between time series as similarity measure, as done by Leydesdorff (2005).
Deriving from the correlation between two time series a and b calculated

94 Knowledge Discovery from Data Streams

Algorithm 15: The ODAC Global Algorithm.

begin
while TRUE do

Read next example;
Update sufficient statistics in all leaves;
foreach nminExamples do

foreach l ∈ Leaves do
Update dissimilarities (D);
Update the Hoeffding bound εl for this leaf;
d1 ← d(x, y)← max(D) ;
d2 ← max(D\d1) ;
if (d1 − d2 > εl or εl < τ) then

/* Test for Aggregation */

TestAggregate(l);
if not aggregated then

/* Test for Splitting */

TestSplit(l);

in Wang and Wang (2003), the factors used to compute the correlation can
be updated incrementally, achieving an exact incremental expression for the
correlation:

corr(a, b) =
P − AB

n√
A2 − A2

n

√
B2 − B2

n

(6.2)

The sufficient statistics needed to compute the correlation are easily updated
at each time step: A =

∑
ai, B =

∑
bi, A2 =

∑
a2i , B2 =

∑
b2i , P =

∑
aibi. In

ODAC, the dissimilarity between variables a and b is measured by an appropri-
ate metric, the Rooted Normalized One-Minus-Correlation given by

rnomc(a, b) =

√
1− corr(a, b)

2
(6.3)

with range [0, 1]. We consider the cluster’s diameter to be the highest dissim-
ilarity between two time series belonging to the same cluster.

The main procedure of the ODAC system grows a tree-shaped structure that
represents the hierarchy of the clusters present in the data. It processes each
example only once. The system incrementally updates, at each new example
arrival, the sufficient statistics needed to compute the dissimilarity matrix.
The dissimilarity matrix for each leaf is only computed when it is being tested
for splitting or aggregation, after receiving a minimum number of examples.
When processing a new example, only the leaves are updated, avoiding com-
putation of unneeded dissimilarities; this speeds up the process every time the
structure grows.

Clustering from Data Streams 95

Splitting Criteria. One problem that usually arises with this sort of models
is the definition of a minimum number of observations necessary to assure
convergence. A common way of doing this includes a user-defined parameter;
after a leaf has received at least nmin examples, it is considered ready to be
tested for splitting. Another approach is to apply techniques based on the
Hoeffding bound (Hoeffding, 1963) to solve this problem. Remember from
section 2.2.2 that after n independent observations of a real-valued random
variable r with range R, and with confidence 1 − δ, the true mean of r is at

least r − ε, where r is the observed mean of the samples and ε =
√

R2ln(1/δ)
2n .

As each leaf is fed with a different number of examples, each cluster ck
will possess a different value for ε, designated εk. Let d(a, b) be the distance
measure between pairs of time series, and Dk = {(xi, xj) | xi, xj ∈ ck, i < j}
be the set of pairs of variables included in a specific leaf ck. After seeing n
samples at the leaf, let (x1, y1) ∈ {(x, y) ∈ Dk | d(x, y) ≥ d(a, b),∀(a, b) ∈ Dk}
be the pair of variables with maximum dissimilarity within the cluster ck, and
in the same way considering D′k = Dk\{(x1, y1)}.

Let (x2, y2) ∈ {(x, y) ∈ D′k | d(x, y) ≥ d(a, b),∀(a, b) ∈ D′k}, d1 = d(x1, y1),
d2 = d(x2, y2) and ∆d = d1 − d2 be a new random variable, consisting on the
difference between the observed values through time. Applying the Hoeffding
bound to ∆d, if ∆d > εk, we can confidently say that, with probability 1− δ,
the difference between d1 and d2 is larger than zero, and select (x1, y1) as the
pair of variables representing the diameter of the cluster. That is:

d1 − d2 > εk ⇒ diam(ck) = d1 (6.4)

With this rule, the ODAC system will only split the cluster when the true diam-
eter of the cluster is known with statistical confidence given by the Hoeffding
bound. This rule triggers the moment the leaf has been fed with enough ex-
amples to support the decision. Although a time series is not a purely random
variable, ODAC models the time series first-order differences in order to reduce
the negative effect of autocorrelation on the Hoeffding bound. Moreover, with
this approach, the missing values can be easily treated with a zero value,
considering that, when unknown, the time series is constant.
Resolving Ties. The rule presented in equation 6.4 redirects the research to
a different problem. There might be cases where the two top-most distances
are nearly or completely equal. To distinguish between the cases where the
cluster has many variables nearly equidistant and the cases where there are
two or more highly dissimilar variables, a tweak must be done. Having in mind
the application of the system to a data stream with high dimension, possibly
with hundreds or thousands of variables, we turn to a heuristic approach.
Based on techniques presented in Domingos and Hulten (2000), we introduce
a parameter to the system, τ , which determines how long will we let the
system check for the real diameter until we force the splitting and aggregation
tests. At any time, if τ > εk, the system overrules the criterion of equation 6.4,
assuming the leaf has been fed with enough examples, hence it should consider
the highest distance to be the real diameter.

96 Knowledge Discovery from Data Streams

Expanding the Tree. When a split point is reported, the pivots are variables
x1 and y1 where d1 = d(x1, y1), and the system assigns each of the remaining
variables of the old cluster to the cluster which has the closest pivot. he suf-
ficient statistics of each new cluster are initialized. The total space required
by the two new clusters is always less than the one required by the previous
cluster. Algorithm 16 sketches the splitting procedure.

Algorithm 16: ODAC: The TestSplit Algorithm

input: l: A leaf in the Cluster Structure
X = {x1, . . . , xj}: Set of variables in l

begin
d1 ← d(x1, y1) = argmaxd(x,y)(Dk);

d2 ← argmaxd(x,y)(Dk\{d(x1, y1)});
d← the average of all distances in the cluster;
d0 ← the minimum distance between variables ∈ l;
if (d1 − d0)|(d1 − d)− (d− d0)| > εk then

create two new leaves: Cx and Cy ;
with x1 and y1 as pivots: x1 ∈ Cx ∧ y1 ∈ Cy;
foreach xi ∈ X do

/* assign variables to the cluster with the

closest pivot. */

if d(xi, x1) ≤ d(xi, y1) then
Assign xi to Cx

;
else

Assign xi to Cy

;

6.3.1.2 Aggregating at Concept Drift Detection

Whenever new data points are available, only the statistics of the leafs
of the current structure are updated. This fact implies that the decision to
expand the structure is based on the data corresponding to a time widow over
the stream. Each node has its own time-window. The time-windows associated
with deeper nodes correspond to more recent data.

In the case of stationary data, where the correlation structure between
time-series remains constant, the splitting criterion guarantees that the diam-
eter of cluster should decrease whenever an expansion of a cluster occurs. In
fact, the diameter of each of the two new clusters should be less or equal than
the parent’s diameter. Nevertheless, usual real-world problems deal with non-
stationary data streams, where time series that were correlated in the past are
no longer correlated to each other in the current time period. The strategy

Clustering from Data Streams 97

Figure 6.3: ODAC structure evolution in a time-changing data set. Start: First
concept is defined for the data set; 50000 exs (t): Concept drift occurs in
the data set; 53220 exs (t + 3220): ODAC detects changes in the structure;
62448 exs (t + 12448, s): ODAC collapses all structure; 71672 exs (t + 21672,
s + 9224): ODAC gathers second concept and stabilizes; End: Second concept
remains in the data set and the correct final structure of the second concept
was discovered.

adopted in ODAC is based on the analysis of the diameters. No computation is
needed between the variables of the two siblings. For each given leaf ck, we
should search to see if the split decision that created it still represents the
structure of data. Thus, we shall test the diameters of ck, ck’s sibling (cs) and
ck’s parent (cj), assuming that the sum of the children diameters should not
be as large as two times the diameter of the parent. We define a new random
variable ∆a = 2 · diam(cj)− (diam(ck) + diam(cs)). Applying the Hoeffding
bound to this random variable, if ∆a > ε then the condition is met, so the
splitting decision is still a good approach. Given this, we choose to aggregate
on cj if:

2 · diam(cj)− (diam(ck) + diam(cs)) < ε (6.5)

supported by the confidence given by the parent’s consumed data. The system
decreases the number of clusters as previous division is no longer supported
and might not reflect the best divisive structure of data. The resulting leaf
starts new computations and a concept drift is detected. Figure 6.3 illustrates
the evolution of a cluster structure in time-changing data.

98 Knowledge Discovery from Data Streams

6.3.1.3 Analysis of the Algorithm

An interesting fact in ODAC is that the time to process incoming examples
and the space needed to store the sufficient statistics at leaves decrease when-
ever an expansion of the structure triggers. To understand this observation,
consider a leaf with n variables. The leaf is expanded, originating two new
leaves. Assume that n1 and n2 are the variables in each new leaf, n = n1 +n2.
By the triangular inequality: n2 < n2

1 + n2
2. This observation implies that the

space for sufficient statistics always decrease after an expansion. On the worst
case scenario, the reduction is n − 1, whilst on the best case scenario, the
reduction is (n/2)2.

6.4 Notes

One of the first incremental clustering algorithms is the COBWEB system (Fisher,
1987). It is included in the group of hierarchical conceptual clustering algo-
rithms. COBWEB is an incremental system that uses a hill-climbing search.
It incorporates objects, one by one, in a classification tree, where each node
is a probabilistic concept representing a class of objects. Whenever a new
observation is available, the object traverses the tree, updating counts of suf-
ficient statistics while descending the nodes. At each intermediate cluster,
one of several operators is chosen: classify an object according to an existent
cluster, create a new cluster, combine two clusters or divide one cluster into
several ones. The search is guided by the cluster utility evaluation function.
Using COBWEB in streams is problematic because every instance translates into
a terminal node in the hierarchy, which is infeasible for large data sets.

Another relevant work is described in Kaski and Kohonen (1994), who
developed the concept of self-organizing maps (SOM), a projection based algo-
rithm that maps examples from a k dimensional space to a low-dimensional
(typically two dimensional) space. The map seeks to preserve the topological
properties of the input space. The model was first described as an artificial
neural network by Teuvo Kohonen, and is sometimes called a Kohonen map.

Elnekave et al. (2007) presents an incremental system for clustering mobile
objects. Incrementally clustering trajectories of moving objects in order to
recognize groups of objects with similar periodic (e.g., daily) mobile patterns.

Chapter 7

Frequent Pattern Mining

Frequent itemset mining is one of the most active research topics in knowledge
discovery from databases. The pioneer work was market basket analysis, espe-
cially the task to mine transactional data describing the shopping behavior of
customers. Since then, a large number of efficient algorithms were developed.
In this chapter we review some of the relevant algorithms and its extensions
from itemsets to item sequences.

7.1 Introduction to Frequent Itemset Mining

Let A = {a1, . . . , am} be a set of items. Items may be products, special
equipment items, service options etc. Any subset I ⊆ A is called an item
set. An item set may be any set of products that can be bought together. Let
T = (t1, . . . , tn) be a set of transactions denoted by transaction database.
Each transaction is a pair 〈tidi, k − itemsi〉 where k − itemi ⊆ A is a set of
k items. A transaction database can list, for example, the sets of products
bought by the customers of a supermarket in a given period of time, the set
of pages visited by a user of a site in one session, etc. Every transaction is an
itemset, but some itemsets may not appear in T .

Let I ⊆ A be an itemset and T a transaction database over A. A transac-
tion t ∈ T covers the itemset I or the itemset I is contained in transaction
t if and only if I ⊆ t.

The set KT (I) = {k ∈ {1, . . . , n} | I ⊆ tk} is called the cover of I w.r.t.
T . The cover of an itemset is the index set of the transactions that cover it.

The value sT (I) = |KT (I)| is called the (absolute) support of I with
respect to T . The value σT (I) = 1

n |KT (I)| is called the relative support
of I w.r.t. T . The support of I is the number or fraction of transactions that
contain it. Sometimes σT (I) is also called the (relative) frequency of I in T .

The Frequent Item Set Mining problem can be formally defined as:

• Given:

– a set A = {a1, . . . , am} of items;

– a vector T = (t1, . . . , tn) of transactions over A;

99

100 Knowledge Discovery from Data Streams

TID Item set
1 {a, d, e}
2 {b, c, d}
3 {a, c, e}
4 {a, c, d, e}
5 {a, e}
6 {a, c, d}
7 {b, c}
8 {a, c, d, e}
9 {b, c, e}
10 {a, d, e}

0 items 1 item 2 items 3 items

∅: 10 {a}: 7 {a, c}: 4 {a, c, d}: 3
{b}: 3 {a, d}: 5 {a, c, e}: 3
{c}: 7 {a, e}: 6 {a, d, e}: 4
{d}: 6 {b, c}: 3
{e}: 7 {c, d}: 4

{c, e}: 4
{d, e}: 4

Table 7.1: A transaction database, with 10 transactions, and the enumeration
of all possible frequent itemsets using the minimum support of smin = 3 or
σmin = 0.3 = 30%.

– a number σmin such that 0 < σmin ≤ 1, the minimum support.

• Goal:

– the set of frequent item sets, that is, the set {I ⊆ A | σT (I) ≥
σmin}.

Since their introduction in Agrawal, Imielinski, and Swami (1993), the fre-
quent itemset (and association rule) mining problems have received a great
deal of attention. Within the past decade, hundreds of research papers have
been published presenting new algorithms or improvements on existing algo-
rithms to solve these mining problems more efficiently.

7.1.1 The Search Space

The search space of all itemsets contains exactly 2|A| different itemsets.
It can be represented by a subset-lattice, with the empty itemset at the top
and the set containing all items at the bottom. If |A| is large enough, then
the naive approach to generate and count the supports of all itemsets over the
database cant be achieved within a reasonable period of time. The main prop-
erty exploited by most algorithms is that support is monotone decreasing with
respect to the extension of an itemset. Given a transaction database T over
I, let X,Y ⊆ I be two itemsets. Then, X ⊆ Y ⇒ support(Y) ≤ support(X).
This is an immediate consequence of cover(X) ⊆ cover(Y). Hence, if an item-
set is infrequent, all of its supersets must be infrequent. Also, the property
all subsets of a frequent item set are frequent holds. This is the monotonicity
property of support.

Apriori was the first algorithm for mining itemsets and association rules.
It was introduced in Agrawal et al. (1993); Agrawal and Srikant (1994). It
uses a level wise, generate and test approach. It starts by generating the set

Frequent Pattern Mining 101

TID Item set
1 {a, d, e}
2 {b, c, d}
3 {a, c, e}
4 {a, c, d, e}
5 {a, e}
6 {a, c, d}
7 {b, c}
8 {a, c, d, e}
9 {b, c, e}
10 {a, d, e}

Table 7.2: A transaction database, with 10 transactions, and the search space
to find all possible frequent itemsets using the minimum support of smin = 3
or σmin = 0.3 = 30%.

F1 of itemsets of size 1. The itemsets of size k+1 are obtained by the itemsets
of size k in two passes. First, a self-join over the set Fk. The union X ∪ Y
of itemsets X,Y ∈ Fk is generated if they have the same k − 1-prefix. This
step can be done efficiently if the itemsets are in lexicographic order. In the
prune step, X ∪ Y is only inserted into Fk+1 if all of its k-subsets occur in
Fk. After that, we need to count the supports of all candidate k+ 1-itemsets.
The database is scanned, one transaction at a time, and the supports of all
candidate itemsets that are included in that transaction are incremented. All
itemsets that turn out to be frequent are inserted into Fk+1. The algorithm
performs a breadth-first search through the search space.

The figure 7.1 presents a transaction database and the enumeration of
all possible frequent itemsets using the minimum support of smin = 3 or
σmin = 0.3 = 30%. There are 25 = 32 possible item sets over A = {a, b, c, d, e}.
In this transaction database there are 16 frequent item sets.

The Apriori level wise approach implies several scans over the database
to compute the support of candidate frequent itemsets. As alternative sev-
eral algorithms significantly reduce this by generating collections of candidate
itemsets in a depth-first strategy. The first algorithm proposed in this line,
is the Eclat (Equivalent CLASS Transformation) algorithm by Zaki (2000)
and the FP-growth algorithm by Han, Pei, Yin, and Mao (2004). The latter
approach, described in Section 7.3.3, uses a prefix-tree (a trie) to store item-
sets (Figure 7.1). It avoids the self-joins required in Apriori for candidate
generation. To generate all possible extensions of a itemset by a single item,
simply appending the item to the suffix-tree. This search scheme generates
each candidate item set at most once. It has been used as a building block in
frequent itemsets and sequence mining from data streams.

102 Knowledge Discovery from Data Streams

Figure 7.1: The search space using the depth-first and corresponding prefix
tree for five items.

7.1.2 The FP-growth Algorithm

The depth-first strategy and sufix-trees used in FP-growth are used in most
of frequent patterns algorithms used in data streams. We give here a compact
description of the algorithm. The pseudo-code1 of FP-tree algorithm is pre-
sented in Algorithm 17. It performs 2 scans over the database. The first scan,
computes the set of frequent items (1-itemsets) and their support counts. The
set of frequent items is sorted in the inverse order of their support and stored
in an array L. The frequent pattern tree, FP-tree, is constructed as follows.
First, create the root node of the tree, labeled with null. For each transaction
in the database, the items are processed in descending support order, and a
branch is created for each transaction. Every node in the FP-tree additionally
stores a counter which keeps track of the number of transactions that share
that node. When considering the branch to be added for a transaction, the
count of each node along the common prefix is incremented by 1, and nodes
for the items in the transaction following the prefix are created and linked
accordingly.

The reason of the first database scan and process transactions in support
descending order is that the more frequently occurring items are arranged
closer to the root of the FP-tree and thus are more likely to be shared. This
way, the FP-tree representation of the database is kept as small as possible.

7.1.3 Summarizing Itemsets

The monotonicity property of support suggests a compressed representa-
tion of the set of frequent itemsets:

• Maximal frequent itemsets: An item set is maximal if it is frequent,
but none of its proper supersets is frequent.

1Following Han, Pei, Yin, and Mao (2004).

Frequent Pattern Mining 103

Algorithm 17: The FP-tree Algorithm.

input: DB: A Transaction Database;
σ: minimum support threshold;

begin
Scan database DB once;
Collect F , the set of frequent items and the support of each item;
Sort F in support-descending order as Flist;
;
Create the root of FP-tree, T , and label it as null;
foreach transaction (t) ∈ DB do

Select the frequent items in t;
Sort them according to Flist;
Let [i|It] be the sorted frequent items in t;
Call insert tree([i|Its], T);

Function insert tree([i|Its], T) ;
if T has a child N labeled i then

Increment N ’s count by 1;

else
Create a new node, N , with its count initialized to 1,
its parent link linked to T,
and its node link linked to the nodes with the same label i;
if Its is nonempty then

Call insert tree(Its,N)

• Closed frequent itemsets: A frequent set is called closed iff it has no
frequent supersets with the same frequency.

In the example of Figure 7.1, the maximal item sets are: {b, c}{a, c, d}{a, c, e}{a, d, e}.
All frequent itemsets are a subset of at least one of these sets.

The following relationship holds between these sets: Maximal ⊆ Closed ⊆
Frequent. The maximal itemsets are a subset of the closed itemsets. From
the maximal itemsets it is possible to derive all frequent itemsets (not their
support) by computing all non-empty intersections. The set of all closed item
sets preserves the knowledge about the support values of all frequent itemsets.

7.2 Heavy Hitters

In Section 2.3.1 we have described two algorithms the Space Saving algo-
rithm (Metwally et al., 2005) and the Frequent algorithm (Misra and Gries,

104 Knowledge Discovery from Data Streams

1982) algorithm to solve top-k queries: find the k most popular items in a
stream.

Here, we discuss a somewhat different problem. Given a stream S of n
items t1, . . . , tn, find those items whose frequency is greater than φ×N . The
frequency of an item i is fi = |{j|tj = i}|. The exact φ-frequent items comprise
the set {i|fi > φ×N}. Heavy hitters are in fact singleton items.

Suppose, φ = 0.5, i.e, we want to find a majority element. An algorithm to
solve this problem can be stated as follows: store the first item and a counter,
initialized to 1. For each subsequent item, if it is the same as the currently
stored item, increment the counter. If it differs, and the counter is zero, then
store the new item and set the counter to 1; else, decrement the counter. After
processing all items, the algorithm guarantees that if there is a majority vote,
then it must be the item stored by the algorithm. The correctness of this
algorithm is based on a pairing argument: if every non-majority item is paired
with a majority item, then there should still remain an excess of majority
items.

The algorithm proposed in Karp et al. (2003) generalizes this idea to an
arbitrary value of φ. We first note, that in any dataset there are no more than
1/φ heavy hitters. The algorithm proceeds as follows (see Algorithm 18). At
any given time, the algorithm maintain a set K of frequently occurring items
and their counts. Initially, this set is empty. As we read an element from
the sequence, we either increment its count in the set K, or insert it in the
set with a count of 1. Thus, the size of the set K can keep growing. To
bound the memory requirements, we do a special processing when |K| > 1/φ.
The algorithm decrements the count of each element in the set K and delete
elements whose count has becomes zero. The key property is that any element
which occurs at least N × φ times in the sequence is in the set |K|. Note,
however, that not all elements occurring in K need to have frequency greater
than N × φ. The set K is a superset of the frequent items we are interested
in. To find the precise set of frequent items, another pass can be taken on the
sequence, and the frequency of all elements in the set K can be counted. The
algorithm identifies a set K of b1/φc symbols guaranteed to contain I(x, φ),
using O(1/φ) memory cells.

Most of these algorithms identifies all true heavy hitters, but not all re-
ported items are necessarily heavy hitters. They are prone to false positives.
The only way to guarantee the non-zero counters correspond to true heavy
hitters is a second scan over the stream.

Cormode and Muthukrishnan (2003) present a method which work for
Insert-only and Insert-delete streams, that is, can cope with addition and
removal of items. Cormode and Hadjieleftheriou (2009) perform a thorough
experimental study of the properties of the most relevant heavy hitters algo-
rithms. The author concludes: The best methods can be implemented to find
frequent items with high accuracy using only tens of kilobytes of memory, at
rates of millions of items per second on cheap modern hardware.

Cormode, Korn, Muthukrishnan, and Srivastava (2008) discuss hierarchi-

Frequent Pattern Mining 105

Algorithm 18: The Karp Algorithm.

input: S: A Sequence of elements; φ: Support;
begin

foreach element (e) ∈ S do
n← n+ 1;
if e ∈ K then

count[e]← count[e] + 1;

else
K ← K ∪ {e};
count[e]← 1;

if |K| > 1/φ then
foreach all a ∈ K do

count[a]← count[a]− 1 ;
if count[a] == 0 then

K ← K\{a}

cal heavy hitters (φ-HHH) in streaming data. Given a hierarchy and a support
φ find all nodes in the hierarchy that have a total number of descendants in
the data stream no smaller than φ×N after discounting the descendant nodes
that are also φ-HHH. This is of particular interest for network monitoring (IP
clustering, denial-of-service attack monitoring), XML summarization, etc, and
explores the internal structure of data.

7.3 Mining Frequent Itemsets from Data Streams

Mining Frequent Itemsets from Data Streams poses many new challenges.
In addition to the one-scan constraint, the limited memory requirement, the
combinatorial explosion of itemsets exacerbates the difficulties. The most diffi-
cult problem in mining frequent itemsets from data streams is that infrequent
itemsets in the past might become frequent, and frequent itemsets in the past
might become infrequent.

We can identify three main approaches. Approaches that do not distin-
guish recent items from older ones (using landmark windows); approaches
that give more importance to recent transactions (using sliding windows or
decay factors); and approaches for mining at different time granularities. They
are discussed in the following sections.

106 Knowledge Discovery from Data Streams

7.3.1 Landmark Windows

Manku and Motwani (2002) present the LossyCounting algorithm, a one-
pass algorithm for computing frequency counts exceeding a user-specified
threshold over data streams. Although the output is approximate, the error is
guaranteed not to exceed a user-specified parameter. LossyCounting accept
two user-specified parameters: a support threshold s ∈ [0, 1], and an error pa-
rameter ε ∈ [0, 1] such that ε � s. At any point of time, the LossyCounting

algorithm can produce a list of item(set)s along with their estimated frequen-
cies.

7.3.1.1 The LossyCounting Algorithm

Let N denote the current length of the stream. The answers produced will
have the following guarantees:

• All item(set)s whose true frequency exceeds s×N are output. There are
no false negatives;

• No item(set) whose true frequency is less than (s− ε)×N is output;

• Estimated frequencies are less than the true frequencies by at most ε×N .

The incoming stream is conceptually divided into buckets of width w =⌈
n
ε

⌉
transactions each. Buckets are labeled with bucket ids, starting from 1.

Denote the current bucket id by bcurrent. For an element e, denote its true
frequency in the stream seen so far by fe. The frequent elements are stored in
a data structure T . T contains a set of entries of the form (e, f,∆), where e is
the element, f its estimated frequency, and ∆ is the maximum possible error
in f .

The pseudo-code of LossyCounting is presented in Algorithm 19. It works
as follows. Initially, T , is empty. Whenever a new element e arrives, if an entry
for e already exists, the algorithm increments its counter f . Otherwise, a new
entry is created of the form (e, 1,

⌈
N
ε

⌉
). At bucket boundaries, the set T is

pruned. The rule for deletion is: an entry (e, f,∆) is deleted if f + ∆ ≤
⌈
N
ε

⌉
.

When a user requests a list of item with threshold s, LossyCounting outputs
all the entries in T where f ≥ (s− ε)N .

7.3.1.2 Frequent Itemsets using LossyCounting

Depending on the application, the LossyCounting algorithm might treat a
tuple as a single item or as a set of items. In the latter case, the input stream is
not processed transaction by transaction. Instead, the available main memory
is filled in with as many transactions as possible. After that, they process
such a batch of transactions together. Let β denote the number of buckets in
memory.

As for items, LossyCounting maintains a data structure T , as a set of
entries of the form (set, f,∆), where set is a subset of items, f is an integer

Frequent Pattern Mining 107

Algorithm 19: The LossyCounting Algorithm.

input: S: A Sequence of Examples; ε: Error margin;
begin

n← 0; ∆← 0;T ← 0; ;
foreach example (e) ∈ S do

n← n+ 1;
if e is monitored then

Increment Counte;

else
T ← T ∪ {e, 1 + ∆} ;

if
⌈
n
ε

⌉
6= ∆ then

∆← n
ε ;

foreach all j ∈ T do
if Countj < ∆ then

T ← T\{j}

representing its approximate frequency, and ∆ is the maximum possible error
in f . D is updated as follows:

• Update itemset: For each entry (set, f,∆), update by counting the
occurrences of set in the current batch. Delete any entry such that f +
∆ ≤ bcurrent;

• New itemset: If a set set has frequency f ≥ β in the current batch
and does not occur in T , create a new entry (set, f, bcurrent − β).

Every set whose true frequency is f ≥ ε × N has an entry in T . Moreover,
for any entry (set, f,∆) ∈ D, the true frequency fset satisfies the inequality
f ≤ fset ≤ f + ∆. When a user requests a list of items with threshold s,
output those entries in T , where f ≥ (s− ε)×N .

Jin and Agrawal (2007) develop the StreamMining Algorithm using po-
tential frequent 2-itemsets and the Apriori property to reduce the number of
candidate itemsets. They use a memory-resident summary data structure that
implements a compact prefix tree using hash tables. Their algorithm is ap-
proximate and false-positive, which has deterministic bounds on the accuracy.
The window model they adopt is the landmark window.

7.3.2 Mining Recent Frequent Itemsets

7.3.2.1 Maintaining Frequent Itemsets in Sliding Windows

Chang and Lee (2005) propose the estWin to maintain frequent itemsets
over a sliding window. The itemsets generated by estWin are maintained in

108 Knowledge Discovery from Data Streams

a prefix tree structure, D. An itemset, X, in D has the following three fields:
freq(X), err(X) and tid(X), where freq(X) is the frequency of X in the
current window since X was inserted into D, err(X) is an upper bound for
the frequency of X in the current window before X was inserted into D, and
tid(X) is the ID of the transaction being processed, when X was inserted
into D. For each incoming transaction Y with ID = tidt, estWin increments
the computed frequency of each subset of Y in D. Let N be the number of
transactions in the window and tid1 be the ID of the first transaction in the
current window. We prune an itemset X and all X’s supersets if:

1. tid(X) ≤ tid1 and freq(X) < dε×Ne;

2. tid(X) > tid1 and freq(X) < dε× (N − (tid(X)− tid1))e.

We note that X is not pruned if it is a 1-itemset, since estWin estimates the
maximum frequency error of an itemset based on the computed frequency of
its subsets and thus the frequency of a 1-itemset cannot be estimated again if
it is deleted.

After updating and pruning existing itemsets, estWin inserts new itemsets
into D. It first inserts all new 1-itemsets, X, into D with freq(X) = 1,
err(X) = 0 and tid(X) = tidt. For each new itemset, X ⊆ Y (|X| > 2),
if all X’s subsets having siz(|X| − 1) are in D before the arrival of Y , then
estWin inserts X into D. estWin assigns freq(X) = 1 and tid(X) = tidt and
estimates err(X) as the following equation:

err(X) = min(min({freq(X ′) + err(X ′)||∀X ′ ⊂ X and |X ′| = |X| − 1})− 1,

bε(w − |X|)c+ |X| − 1)

For each expiring transaction of the sliding window, the itemsets in D that are
subsets of the transaction, are traversed. For each itemset, X, being visited, if
tid(X) < tid1, freq(X) is decreased by 1; otherwise, no change is made since
the itemset is inserted by a transaction that comes later than the expiring
transaction. Then, pruning is performed on X as described before. Finally,
for each itemset, X, in D, estWin outputs X as an frequent itemset if:

1. tid(X) < tid1 and freq(X) ≥ σ ×N ;

2. tid(X) > tid1 and (freq(X) + err(X)) ≥ σ ×N .

Chang and Lee (2003), the same authors of estWin, proposed a decay
method for mining the most recent frequent itemsets adaptively. The effect of
old transactions is diminished by decaying the old occurrences of each itemset
as time goes by.

7.3.2.2 Mining Closed Frequent Itemsets over Sliding Windows

Chi, Wang, Yu, and Muntz (2004) consider the problem of mining closed
frequent itemsets over a data stream sliding window using limited memory

Frequent Pattern Mining 109

space. Their algorithm, Moment, uses an in-memory prefix-tree-based struc-
ture, called the Closed Enumeration Tree (CET), to maintain a dynamically
selected set of itemsets over a sliding-window. Let vX be a node representing
the itemset X in the CET. The dynamically selected set of itemsets (nodes)
are classified into the following four types.

• Infrequent Gateway Nodes (IGN): vX is an IGN if:

– X is infrequent,

– vY is the parent of vX and Y is frequent,

– if vY has a sibling, vY ′ , such that X = Y ∪Y ′, then Y ′ is frequent;

• Unpromising Gateway Nodes (UGN): vX is a UGN if:

– X is frequent,

– ∃Y such that Y is a frequent closed itemset, Y ⊃ X, freq(Y) =
freq(X) and Y is before X according to the lexicographical order
of the itemsets;

• Intermediate Nodes (IN): vX is an IN if:

– X is frequent,

– vX is the parent of vY such that freq(Y) = freq(X),

– vX is not a UGN;

• Closed Nodes (CN): vX is a CN if X is an frequent closed itemset.

All supersets of an infrequent itemset are not frequent. In the CET, an
IGN, vX has no descendants and there is no node, vY , such that Y ⊃ X. If
vX is a UGN, then none of vXs descendants is a CN; otherwise vX is a CN
but not a UGN. A UGN, vX , also has no descendants, since no CNs can be
found there. Thus, not all itemsets need to be kept in the CET, even though
Moment computes the exact mining result.

For each incoming transaction, Moment traverses the parts of the CET
that are related to the transaction. For each node, vX , visited, it increments
its frequency and performs the following updates to the CET according to the
change in vXs node type:

• vX is an IGN: If X now becomes frequent, then:

– for each left sibling vY of vX , Moment checks if new children should
be created for vY as a join result of X and Y , and

– checks if new descendants of vX should be created;

• vX is a UGN: If vX now becomes an IN or a CN, then Moment checks if
new descendants of vX should be created;

110 Knowledge Discovery from Data Streams

Figure 7.2: The FP-tree generated from the database of Figure 7.2 with
support set to 4(a). The FP-stream structure: the pattern-tree with a tilted-
time window embedded (b).

• vX is an IN: vX may now become a CN but no other update is made to
the CET due to vX ;

• vX is a CN: vX will remain a CN and no update is made to the CET
due to vX .

When a transaction expires from the sliding window, Moment traverses the
parts of the CET that are related to the transaction. For each node, vX ,
visited, it decrements its frequency and performs the following updates to the
CET.

• X is infrequent: vX remains an IGN and no update is made to the CET
due to vX .

• X is frequent:

– If X now becomes infrequent, then vX becomes an IGN. Moment
first prunes all vXs descendants. Then, those children of vXs left-
sided siblings that are obtained by joining with vX are updated
recursively.

– If X remains frequent: if vX now becomes a UGN, then Moment

prunes all vXs descendants; otherwise, we only need to update the
node type of vX if it changes from a CN to an IN and no other
update is made to the CET due to vX .

The merit of Moment is that it computes the exact set of FCIs over a sliding
window and can output the current closed frequent itemsets at any time.

7.3.3 Frequent Itemsets at Multiple Time Granularities

The FP-tree algorithm was used as a building block for mining frequent
patterns in data streams at multiple time granularities in Giannella, Han, Pei,

Frequent Pattern Mining 111

Yan, and Yu (2004). The FP-Stream Algorithm was designed to maintain
frequent patterns under a tilted-time window framework in order to answer
time-sensitive queries. The frequent patterns are compressed and stored using
a tree structure similar to FP-tree and updated incrementally with incoming
transactions. Quoting Giannella et al. (2004):

Using this scenario, we can answer the following queries: (1) what
is the frequent pattern set over the period t2 and t3? (2) what are
the periods when {a, b} is frequent? (3) does the support of {a}
change dramatically in the period from t3 to t0? and so on. That
is, one can 1) mine frequent patterns in the current window, 2
mine frequent patterns over time ranges with granularity confined
by the specification of window size and boundary, 3) put different
weights on different windows to mine various kinds of weighted
frequent patterns, and 4) mine evolution of frequent patterns based
on the changes of their occurrences in a sequence of windows.

Time windows are a standard approach to deal with evolving data. The
frequency of a pattern in different time windows also evolves, that is a pattern
that was not frequent in the past might become frequent and vice-versa. To
ensure the completeness of frequent patterns Giannella et al. consider three
categories of patterns: frequent patterns, subfrequent patterns, and infrequent
patterns. The frequency of an itemset I over a period of time T is the number of
transactions in T in which I occurs. The support of I is the frequency divided
by the total number of transactions observed in T . Let the min support be
σ and consider a relaxation ratio ρ = ε/σ, where ε is the maximum support
error. I is frequent if its support is no less than σ; it is sub-frequent if its
support is less than σ but no less than ρ; otherwise, it is infrequent.

The FP-stream structure consists of two parts. A global FP-tree held in
main memory, and tilted-time windows embedded in this pattern-tree. Incre-
mental updates can be performed on both parts of the FP-stream. Incremental
updates occur when some infrequent patterns become (sub)frequent, or vice
versa. At any moment, the set of frequent patterns over a period can be ob-
tained from FP-stream.

FP-stream stores the frequencies for itemset I in a tilted-time window2.
Assume that the stream of transactions is broken up into batches B1, B2, . . . ,
Bn, . . . of fixed sized, where Bn is the most current batch and B1 the oldest.

As the transactions of the first batch B1 arrived, the frequencies for all
the items are computed, and an ordering f list is created, as in the FP-tree

Algorithm. This order remains fixed for the subsequent batches. The trans-
actions of B1 are processed again creating an FP-tree pruning all items with
frequency less than ε× |B1|.

The maintenance of the tilted-time windows is straightforward. When four
quarters are accumulated, they are merged together in one hour bin. After 24

2Giannella et al. (2004) discuss also a more compact structure using logarithmic tilted-
time windows.

112 Knowledge Discovery from Data Streams

hours, one day is built, and so on. This model, allow to compute the frequent
itemsets in the last hour with the precision of a quarter of an hour, the last day
frequent itemsets with a precision of an hour, the last month with a precision
of a day, etc. For a period of one month we need 4 + 24 + 31 = 59 units of
time. Let t1, . . . , tn be the tilted-time windows which group the batches seen
so far. Denote the number of transactions in ti by wi. The goal is to mine
all frequent itemsets with support larger than σ over period T = tk ∪ tk+1 ∪
. . . ∪ tk′, where 1 ≤ k ≤ k′ ≤ n. The size of T , denoted by W , is the sum of
the sizes of all time-windows considered in T . It is not possible to store all
possible itemsets in all periods. FP-stream drops the tail sequences when

∀i, n ≤ i ≤ 1, fI(ti) < σ × wi and

i∑
j=n

fI(tj) < ε×
i∑

j=n

wj

We no longer have the exact frequencies over T . By delivering all frequent
itemsets larger than (σ − ε) × W any frequent itemset in T will not miss,
although we might get itemsets whose frequency is between (σ − ε)×W and
σ ×W .

Itemsets and their tilted-time window tables are maintained in the FP-stream
data structure. When a new batch B arrives, mine the itemsets from B and
update the FP-stream structure. For each itemset I mined in B, if I does not
appear in the structure, add I if fI(B) ≥ ε|B|. Otherwise, add fI(B) to I’s
table and then do tail pruning. If all of the windows are dropped, then drop I
from the FP-stream data structure. Moreover, any superset of I will also be
dropped.

7.4 Sequence Pattern Mining

A sequence is an ordered list of itemsets. The problem of mining sequential
patterns from large static databases has been widely addressed (Agrawal and
Srikant, 1995; Pei, Han, Mortazavi-Asl, Pinto, Chen, Dayal, and Hsu, 2001;
Masseglia, Poncelet, and Teisseire, 2003; Marascu and Masseglia, 2006). In
recent years, emerging applications such as network traffic analysis, intrusion
and fraud detection, web clickstream mining or analysis of sensor data requires
mining frequent sequences in the triggered events.

Agrawal and Srikant (1995) define the problem of mining sequential pat-
terns from a static database DB as: Let I = i1, i2, ..., ik, be a set of k-itemsets.
A sequence is an ordered list of itemsets denoted by 〈s1, s2, . . . , sn〉 where
sj is an itemset. A sequence 〈a1, a2, . . . , an〉 is a subsequence of another se-
quence 〈b1, b2, . . . , bm〉 if there exist integers i1 < i2 < . . . < in such that
a1 ⊆ bi1, a2 ⊆ bi2, . . . , an ⊆ bin. A sequence is maximal if it is not contained
in any other sequence.

Frequent Pattern Mining 113

For example, let C be a client and S = 〈(c)(de)(h)〉 be that client’s pur-
chases. S means that C bought item c, then he bought d and e at the same
moment (i.e. in the same transaction) and finally bought item h.

The support of a sequence s, denoted by supp(s), is defined as the fraction
of total data-sequences that contain s. If supp(s) > minsupp, with a mini-
mum support value minsupp given by the user, s is considered as a frequent
sequential pattern. The problem of sequential pattern mining is thus to find
all the frequent sequential patterns.

There are several algorithms for mining sequential patterns from static
databases. The best-known algorithms are GSP (Agrawal and Srikant, 1995)
and PrefixSpan (Pei et al., 2001). They represent the two main approaches to
the problem: apriori-based and pattern-growth methods. In the next section
we present an efficient algorithm for Sequential Pattern Mining over Data
Streams.

7.4.1 Reservoir Sampling for Sequential Pattern Mining over
Data Streams.

Raissi and Poncelet (2007) introduced a novel algorithm in order to effi-
ciently mine sequential patterns over data streams. In their data stream model
(see Figure 7.3), on every timestamp, a new data point arrives in the stream
and the data point is defined as a couple of sequence id and its associated
transaction (i.e., itemset). The goal is to mine sequential patterns based on
the maintenance of a synopsis of the data stream. Their proposition is mo-
tivated by the fact that the volume of data in real-world data streams is
usually too huge to be efficiently mined and that an approximate answer for
mining tasks is largely acceptable. Their algorithm relies on a biased reservoir
sampling (Aggarwal, 2006) technique to build a dynamic sample suitable for
sequence mining tasks.

Figure 7.3: Stream model with 3 different sequences ids with their associated
transactions.

The biased reservoir sampling was introduced in (Aggarwal, 2006) and is
based on the following fact: overtime, in many cases, the data stream distri-
bution may evolve and the original reservoir sampling results may become
irrelevant. A solution is to use a bias function to regulate the sampling from
the data stream. In other words, the bias function modulates the sample in
order to focus on recent or old behaviors in the stream following application
specific constraints. A bias function f(r, t) associated with the rth data point

114 Knowledge Discovery from Data Streams

of the stream at the time of arrival of the tth point is proportional to the prob-
ability p(r, t) of the rth point belonging to the reservoir at the time of arrival
of the tth point. The use of a bias function guarantees that recent points ar-
riving over the stream have higher probabilities to be inserted in the reservoir.
However, it is still an open problem to determine if maintenance algorithms
can be implemented in one pass but the author in Aggarwal (2006) exploit
some properties of a class of memory-less bias functions: the exponential bias
function which is defined as follow: f(r, t) = e−λ(t−r) with parameter λ be-
ing the bias rate. The inclusion of such a bias function enables the use of a
simple and efficient replacement algorithm. Furthermore, this special class of
bias functions imposes an upper bound on the reservoir size which is indepen-
dent of the stream length. This is a very interesting property since it means
that the reservoir can be maintained in main-memory independently of the
stream’s length.

In order to efficiently build a biased sample over data streams, the authors
started by applying the sampling techniques over a static data set scenario.
The authors introduced several theoretical results concerning the accuracy of
the sample and the mined result given a single parameter: the user defined er-
ror threshold3. For a random sample SD generated from a sequence database
D, the authors estimate the probability that the error rate gets higher than
the user defined threshold ε, denoted Pr[e(s,SD) > ε] by using Hoeffding
concentration inequalities (Hoeffding, 1963). Basically, the concentration in-
equalities are meant to give an accurate prediction of the actual value of a
random variable by bounding the error term (from the expected value) with
an associated probability.

The same statistical reasoning is applied next for the case of sequential
pattern mining over data streams mining. However, the main challenge in
this model is that the length of the stream is unknown. Therefore, there is a
need to maintain a dynamic sample of the stream. In order to do so, Raissi
and Poncelet (2007) proved that a sampling algorithm for sequential pattern
mining should respect two conditions:

1. There must be a lower bound on the size of the sample. According to
their previous results from the static database model, this is achieved
by using an (ε, δ)-approximation combined with an exponential biased
reservoir sampling method;

2. The insertion and replacement operations, essential for the reservoir
updating, must be done at sequence level and at transactions level. This
is necessary to control the size of the itemsets for each sequence in the
reservoir.

The proposed approach is a replacement algorithm using an exponential
bias function that regulates the sampling of customers and their transactions
over a stream. The algorithm starts with an empty reservoir of capacity 1

λ

3Notice that a similar approach was used for itemset mining in Toivonen (1996).

Frequent Pattern Mining 115

(where λ is the bias rate of our exponential bias function) and each data
point arriving from the stream is deterministically added to the reservoir by
flipping a coin, either as:

• A simple insertion into the reservoir;

• A replacement of a whole sequence and all its related itemsets.

Note that this simple replacement is enough to sample sequences; however,
the list of transactions belonging to each sequence in the reservoir needs to be
bounded. In order to do so, the approach uses a sliding window mechanism.
A sliding window can be defined as a sequence-based window of size k con-
sisting of the k most recent data elements that arrived on the stream or as
a timestamp-based window of duration t containing all the data points whose
arrival timestamp is within a time interval t of the current time.

The approach uses a sequence-based window to retain the latest and most
recent transactions for a given sequence in the sample (with a black list used
in order to respect some consistency properties over the sequences present in
the sample). This is useful to get accurate mining tasks over recent horizons
of the stream. Besides, the exponential biased function that is used enables
the final user to select the desired size of the reservoir (with some constraints
on the (ε, δ)-approximation) and thus a relevant sample may be maintained
in main memory, depending on the application needs.

The merit of the approach is that at any desired moment, it is always
possible to obtain accurate and fast results for sequential pattern mining based
only on a small dynamic sample residing in main memory. Furthermore, the
authors highlight the potential of further works on sampling for sequential
pattern mining and specially in the new challenging data streams model.

7.5 Notes

Cheng, Ke, and Ng (2008) present a detailed survey on algorithms for
mining frequent itemsets over data streams. Wang and Yang (2005) discuss
several models of sequencial pattern mining from large data sets.

Raissi, Poncelet, and Teisseire (2007) proposed the system FIDS (Frequent
itemsets mining on data streams). One interesting feature of this system is
that each item is associated with a unique prime number. Each transaction is
represented by the product of the corresponding prime numbers of individual
items into the transaction. As the product of the prime number is unique we
can easily check the inclusion of two itemsets (e.g. X ⊆ Y) by performing a
modulo division on itemsets (Y MOD X). If the remainder is 0 then X ⊆ Y ,
otherwise X is not included in Y . FIDS uses a novel data structure to maintain

116 Knowledge Discovery from Data Streams

frequent itemsets coupled with a fast pruning strategy. At any time, users can
issue requests for frequent sequences over an arbitrary time interval.

Li, Shan, and Lee (2008) proposed a in-memory summary data structure
SFI-forest (summary frequent itemset forest), to maintain an approximated set
of frequent itemsets. Each transaction of the stream is projected into a set of
sub-transactions, and these sub-transactions are inserted into the SFI-forest.
The set of all frequent itemsets is determined from the current SFI-forest.

Distributed algorithms for association rule learning were presented in Schus-
ter, Wolff, and Trock (2005).

In the context of Data Stream Management Systems, frequent pattern
mining is used to solve iceberg queries, and computing iceberg cubes (Fang,
Shivakumar, Garcia-Molina, Motwani, and Ullman, 1998).

Chapter 8

Decision Trees from Data Streams

A decision tree uses a divide-and-conquer strategy. It attacks a complex prob-
lem by dividing it into simpler problems and recursively applies the same
strategy to the sub-problems. Solutions of sub-problems can be combined to
yield a solution of the complex problem. The power of this approach comes
from the ability to split the instance-space into subspaces and each subspace is
fitted with different models. Decision trees are one of the most used algorithms
in the data mining community: they are distribution-free, and tree models ex-
hibit high degree of interpretability. These factors strongly contributed for
their increasing popularity in the data mining community.

8.1 Introduction

Formally, a decision tree is a direct acyclic graph in which each node is
either a decision node with two or more successors or a leaf node. In the
simplest model, a leaf node is labeled with a class label and a decision node
has some condition based on attribute values. Decision trees are one of the
most used methods in data mining mainly because of their high degree of
interpretability. The hypothesis space of decision trees is within the disjunctive
normal form (DNF) formalism. Classifiers generated by those systems encode
a DNF for each class. For each DNF, the conditions along a branch represent
conjuncts and the individual branches can be seen as disjuncts. Each branch
forms a rule with a conditional part and a conclusion. The conditional part
is a conjunction of conditions. Conditions are tests that involve a particular
attribute, operator (e.g. =, ≥, ∈, etc.) and a value from the domain of that
attribute. These kind of tests correspond, in the input space, to a hyper-plane
that is orthogonal to the axes of the tested attribute and parallel to all other
axis. The regions produced by these classifiers are all hyper-rectangles. Each
leaf corresponds to a region. The regions are mutually exclusive and exhaustive
(i.e. cover all the instance space).

Learning decision trees from data streams is one of the most challenging
problems for the data mining community. A successful example is the VFDT

system (Domingos and Hulten, 2000). The base idea comes from the observa-
tion that a small number of examples are enough to select the correct splitting

117

118 Knowledge Discovery from Data Streams

test and expand a leaf. The algorithm makes a decision, that is, installs a split-
test at a node, only when there is enough statistical evidence in favor of a split
test. This is the case of Gratch (1996); Domingos and Hulten (2000); Gama
et al. (2003). VFDT like algorithms can manage millions of examples using few
computational resources with a performance similar to a batch decision tree
given enough examples.

8.2 The Very Fast Decision Tree Algorithm

8.2.1 VFDT- The Base Algorithm

The Very Fast Decision Tree (VFDT) algorithm was first presented in Domin-
gos and Hulten (2000). In VFDT a decision tree is learned by recursively re-
placing leaves with decision nodes. Each leaf stores the sufficient statistics
about attribute-values. The sufficient statistics are those needed by a heuristic
evaluation function that evaluates the merit of split-tests based on attribute-
values. When an example is available, it traverses the tree from the root to
a leaf, evaluating the appropriate attribute at each node, and following the
branch corresponding to the attribute’s value in the example. When the ex-
ample reaches a leaf, the sufficient statistics are updated. Then, each possible
condition based on attribute-values is evaluated. If there is enough statistical
support in favor of one test over all the others, the leaf is transformed to a
decision node. The new decision node will have as many descendant leaves as
the number of possible values for the chosen test (therefore this tree is not
necessarily binary). The decision nodes only maintain the information about
the split-test installed in this node.

The main innovation of the VFDT system is the use of Hoeffding bound
(see Section 2.2.2) to decide the sample size to observe before installing a
split-test at each leaf. Let H(·) be the evaluation function of an attribute. For
the information gain, the range R, of H(·) is log2(#classes). Suppose that
after observing n examples in a given leaf, xa is the attribute with the highest
H(·), and xb the attribute with second-highest H(·). Let ∆H = H(xa)−H(xb)
be the difference between the two better attributes. Then, if ∆H > ε holds,
the Hoeffding bound (Hoeffding, 1963) states with probability 1− δ, that xa
is really the attribute with highest value in the evaluation function in the
universe, e.g. if seeing an infinite number of examples. In this case the leaf
must be transformed into a decision node that splits on xa. If ∆H < ε, the
sample size is not enough to take a stable decision. We need to extend the
sample by seeing more examples. As the sample size increases, ε decreases, and
if there is an informative attribute, it will be pushed up. An assumption behind
this rationality is that the distribution generating examples is stationary.

The evaluation of the merit function for each example could be very ex-

Decision Trees from Data Streams 119

Algorithm 20: VFDT: The Hoeffding Tree Algorithm.

input : S: Stream of examples
X: Set of nominal Attributes
Y : Y = {y1, . . . , yk} Set of class labels
H(.): Split evaluation function
Nmin: Minimum number of examples
δ: is one minus the desired probability
of choosing the correct attribute at any node.
τ : Constant to solve ties.

output: HT : is a Decision Tree
begin

Let HT ← Empty Leaf (Root) ;
foreach example (x, yk) ∈ S do

Traverse the tree HT from the root till a leaf l;
if yk == ? then

Classify the example with the majority class in the leaf l;

else
Update sufficient statistics;
if Number of examples in l > Nmin then

Compute Hl(Xi) for all the attributes ;
Let Xa be the attribute with highest Hl ;
Let Xb be the attribute with second highest Hl ;

Compute ε =
√

R2ln(2/δ)
2n (Hoeffding bound) ;

if (H(Xa)−H(Xb) > ε) then
Replace l with a splitting test based on attribute Xa;
Add a new empty leaf for each branch of the split ;

else
if ε < τ then

Replace l with a splitting test based on attribute
Xa;
Add a new empty leaf for each branch of the split
;

120 Knowledge Discovery from Data Streams

pensive. It turns out that it is not efficient to compute H(·) every time that an
example arrives. VFDT only computes the attribute evaluation function H(·)
when a minimum number of examples has been observed since the last eval-
uation. This minimum number of examples is a user-defined parameter.

When two or more attributes continuously exhibit very similar values of
H(·), even with a large number of examples, the Hoeffding bound will not
decide between them. This situation can happen even for two or more equally
informative attributes. To solve this problem VFDT uses a constant τ intro-
duced by the user for run-off. Taking into account that ε decreases when n
increases, if ∆H < ε < τ then the leaf is transformed into a decision node.
The split test is based on the best attribute.

8.2.2 Analysis of the VFDT Algorithm

VFDT has the ingredients to process high-speed data streams: using limited
computational resources in terms of space, processing a single example each
time, and answers or models are available at anytime.

There are several important characteristics of VFDT like algorithms that
differentiate from the standard greedy-search used by C4.5 (Quinlan, 1993)
or Cart (Breiman et al., 1984) like algorithms. One is that VFDT decision
models exhibit low variance profile. Any decision in VFDT, e.g. decision to
expand a node, has statistical support. While in C4.5 (or in Cart) the number
of examples that support a decision decreases as the tree grows, in VFDT all
nodes received the number of examples needed to make informed decisions.
This is possible because of the abundance of data in open-ended streams. The
second difference is a direct consequence of the first one: there is no room for
pruning, e.g. control overfitting.

A comparative summary between batch decision tree learners and VFDT is
presented in the following table:

Decision Processes Batch Learning Hoeffding Trees
Decide to expand Choose the best split from Accumulate data till there is

all data in a given node statistical evidence in favor to
a particular splitting test

Pruning Mandatory No need
Drift Detection Assumes data is stationary Smooth adaptation to

the most recent concepts

In Hoeffding trees, the stream of examples traverse the tree till a leaf. The
examples that fall in each leaf corresponds to a sort of a time-window over
the most recent examples. Figure 8.1 illustrates the correspondence between
the nodes and the time-windows over the stream. Note that VFDT still assume
that examples are independent.

Domingos and Hulten (2000) proved, under realistic assumptions, that
the decision tree generated by the Hoeffding Tree Algorithm is asymptotically
close to the one produced by a standard batch algorithm (that is an algorithm
that uses all the examples to select the splitting attribute). They use the

Decision Trees from Data Streams 121

Figure 8.1: Illustrative example of a decision tree and the time-window as-
sociated with each node.

concept of intentional disagreement between two decision trees, defined as the
probability that one example follows different paths in both trees. They show
that this probability is proportional to δ.

8.3 Extensions to the Basic Algorithm

8.3.1 Processing Continuous Attributes

Most real-world problems are described by numerical attributes. Practical
applications of learning algorithms to real-world problems should address this
issue. In almost all decision trees, a decision node that contains a split-test
based on a continuous attribute has two descendant branches. The split-test
is a condition of the form attri ≤ cut point. The two descendant branches cor-
responds to the values TRUE and FALSE for the split-test. These split-tests
introduce an additional problem: select the cut point that will minimize (or
maximize) some merit criterion. For batch decision tree learners, this problem
requires a sort operation that is the most time consuming operation (Catlett,
1991).

In this section we discuss efficient methods to deal with numerical at-
tributes in the context of on-line decision tree learning. All of them avoid
the sort operation. There is a trade-off between the space required to store
the sufficient-statistics and the ability to identify the true cut point. We can
identify two extreme solutions. In one extreme, all possible cut points are
stored in memory, with guarantees to find the exact cut point given the set
of observed data points. In the other extreme, an analytical solution based on
discriminant analysis, only stores two quantities for each class: the mean and
standard deviation.

122 Knowledge Discovery from Data Streams

x 71 69 80 83 70 65 64 72 75 68 81 85 72 75
C + - + - - + - - - - - + + -

Figure 8.2: Illustrative Example of the Btree to store sufficient statistics of
a continuous attribute at a leaf.

8.3.1.1 Exhaustive Search

In VFDTc (Gama et al., 2003) the cut point is chosen from all the observed
values for that attribute in the sample at a leaf. In order to evaluate the
quality of a split, we need to compute the class distribution of the examples
at which the attribute-value is less than or greater than the cut point. These
counts are the sufficient statistics for almost all splitting criteria. They are
computed with the use of the two data structures maintained in each leaf of
the decision tree. The first data structure is a vector of the classes distribution
over the attribute-values for the examples that reach the leaf.

For each continuous attribute j, the system maintains a binary tree struc-
ture. A node in the binary tree is identified with a value i (that is the value
of the attribute j seen in an example), and two vectors (of dimension k) used
to count the values that go through that node. These vectors, V E and V H
contain the counts of values respectively ≤ i and > i for the examples labeled
with one of the possible class values. When an example reaches a leaf, all the
binary trees are updated. Figure 21 presents the algorithm to insert a value
in the binary tree. Insertion of a new value in this structure is O(log n) where
n represents the number of distinct values for the attribute seen so far.

To compute the information gain of a given attribute we use an exhaustive
method to evaluate the merit of all possible cut points. In our case, any value
observed in the examples so far can be used as cut point. For each possible
cut point, we compute the information of the two partitions using equation
8.1.

Decision Trees from Data Streams 123

Algorithm 21: The InsertValueBtree(xj , y, Btree) Algorithm.

input : xj : Attribute-value
y: Index of the class label
Btree: the Btree for the attribute.

output: Btree: the Btree for the attribute after inserting value xj of
an example from class y.

begin
if (xj == Btree.i) then

Btree.VE[y] = Btree.VE[y] + 1 ;

else if (xj < Btree.i) then
Btree.VE[y] = Btree.VE[y] + 1;
InsertValueBtree(xj , y, Btree.Left);
else

Btree.VH[y] = Btree.VH[y] +1;
InsertValueBtree(xj , y, Btree.Right);

Algorithm 22: The LessThan(i, k, BTree) Algorithm.

input : i: Reference value for Attribute Aj .
k: Class label.
Btree: the Btree for the attribute Aj .

output: #(Aj ≤ i) for the attribute Aj and class k
begin

if (BTree == NULL) then return (0) ;
if (BTree.i == i) then return Btree.V E[k] ;
if (BTree.i < i) then

return Btree.V E[k] + LessThan(i, k, BTree.Right) ;

else
return LessThan(i,k,BTree.Left) ;

124 Knowledge Discovery from Data Streams

info(Aj(i)) = P (Aj ≤ i) ∗ iLow(Aj(i)) + P (Aj > i) ∗ iHigh(Aj(i)) (8.1)

where i is the split point, iLow(Aj(i)) the information of Aj ≤ i (equation
8.2) and iHigh(Aj(i)) (equation 8.3) the information of Aj > i. So we choose
the split point that minimizes (8.1).

iLow(Aj(i)) = −
∑
K

P (K = k|Aj ≤ i) ∗ log2(P (K = k|Aj ≤ i)) (8.2)

iHigh(Aj(i)) = −
∑
K

P (K = k|Aj > i) ∗ log2(P (K = k|Aj > i)) (8.3)

These statistics are easily computed using the counts in the Btree, and using
the algorithm presented in Algorithm 22. For each attribute, it is possible to
compute the merit of all possible cut points traversing the binary tree only
once.

When learning decision trees from streaming data, continuous attribute
processing is a must. Jin and Agrawal (2003) present a method for numerical
interval pruning,

8.3.1.2 Discriminant Analysis

A fast and space efficient analytical method for determining the cut point
of a continuous attribute in VFDT like algorithms was presented in Gama et al.
(2004). The method is based on discriminant analysis. It was first presented
in Loh and Shih (1997) in the context of off-line decision tree induction. The
method is very efficient in terms of space and speed. The sufficient statistics
required are the mean and variance per class of each numerical attribute.
This is a major advantage over other approaches, like the exhaustive method
used in C4.5 (Quinlan, 1993) and in VFDTc (Gama et al., 2003), because
all the necessary statistics are computed on the fly, a desirable property when
processing huge data streams. It guarantees constant time and space to process
each example.

Atti ≤ di Atti > di
Class + p+

1 p+
2

Class − p−1 p−2

Table 8.1: Contingency table to compute the entropy of a splitting test.

Decision Trees from Data Streams 125

Figure 8.3: Illustrative example of the solutions of equation 8.4.

The method is restricted to two class problems 1. It uses a modified form
of quadratic discriminant analysis to include different variances on the two
classes. The analysis assumes that the distribution of the values of an attribute
follows a normal distribution for both classes.

Let N(x̄, σ) = 1
σ
√

2π
exp

(
− (x−x̄)2

2σ2

)
be the normal density function, where

x̄ and σ2 are the sample mean and variance of the class. The class mean and
variance are estimated from the sample set of examples at each leaf. The best
cut-point is the solution of:

P (+)N(x̄+, σ+) = P (−)N(x̄−, σ−) (8.4)

The quadratic discriminant splits the X-axis into three intervals (−∞, d1),
(d1, d2), (d2,∞) where d1 and d2 are the possible roots of the equation 8.4
where p(i) denotes the estimated probability than an example belongs to class
i (see Figure 8.3). We prefer a binary split, so we use the root closer to the
sample means of both classes. Let d be that root. The splitting test candidate
for each numeric attribute i will use the form Atti ≤ di. To choose the best
splitting test from the candidate list we use a heuristic method. We use the
information gain to choose, from all the splitting point candidates (one for
each attribute), the best splitting test. The information kept by the tree is
not sufficient to compute the exact number of examples for each entry in the
contingency table. Doing that would require to maintain information about all
the examples at each leaf. With the assumption of normality, we can compute
the probability of observing a value less or greater than di (See table 8.1).
From these probabilities and the distribution of examples per class at the
leaf we populate the contingency table. The splitting test with the maximum
information gain is chosen. This method only requires that we maintain the

1To solve multi-class problems, Loh and Shih (1997) use a clustering algorithm to form
two super-classes. This strategy is not applicable in the streaming setting. Gama et al.
(2004) decompose a k-class problem is decomposed into k × (k − 1)/2 two-class problems,
generating a forest of trees (described in Section 10.4.2).

126 Knowledge Discovery from Data Streams

mean and standard deviation for each class per attribute. Both quantities are
easily maintained incrementally.

8.3.2 Functional Tree Leaves.

To classify a test example, the example traverses the tree from the root
to a leaf. The example is classified with the most representative class, e.g.
the mode, of the training examples that fall at that leaf. A promising alter-
native, presented in Gama et al. (2003, 2004) and Kirkby (2008), consists of
using naive Bayes classifiers at tree leaves. That is, a test example is classified
with the class that maximizes the posterior probability given by Bayes rule
assuming the independence of the attributes given the class.

There is a simple motivation for this option. VFDT like algorithms, only
change a leaf to a decision node when there are sufficient number of examples
to support the change. Usually hundreds or even thousands of examples are
required. To classify a test example, the majority class strategy uses informa-
tion only about class distributions and does not look for the attribute-values.
It uses only a small part of the available information, a crude approximation
to the distribution of the examples. On the other hand, naive Bayes takes into
account not only the prior distribution of the classes, but also the conditional
probabilities of the attribute-values given the class. This way, there is a much
better exploitation of the available information at each leaf. Moreover, naive
Bayes is naturally incremental. It deals with heterogeneous data and missing
values. It has been observed (Domingos and Pazzani, 1997) that for small
datasets naive Bayes is a very competitive algorithm.

Assuming that the attributes are independent given the class, the Bayes
rule will classify an example ~x, in the class that maximizes the a posterior
conditional probability, given by:

P (Ck|~x) ∝ P (Ck)
∏

P (xj |Ck)

or equivalently, by applying logarithms:

P (Ck|~x) ∝ log(P (Ck)) +
∑

log(P (xj |Ck)).

To compute the conditional probabilities P (xj |Ck) we should distinguish
between nominal attributes and continuous ones. In the former the problem is
trivial using the sufficient statistics used to compute information gain. In the
latter, there are two usual approaches: either assuming that each attribute fol-
lows a normal distribution or discretizing the attributes. If assuming a normal
distribution, the sufficient statistics, the mean and variance for each class, can
be computed on the fly. For example, Gama et al. (2004) take advantage of
the sufficient statistics to estimate cut points using the discriminant analysis
described in section 8.3.1.2. A discretization method to compute P (xj |Ck)
appears in Gama et al. (2003). The required counts are derived from the
binary-tree structure stored at each leaf before it becomes a decision node.

Decision Trees from Data Streams 127

Any numerical attribute is discretized into 10 intervals. To count the number
of examples per class that fall at each interval we use the algorithm described
in Algorithm 23. This algorithm is computed only once in each leaf for each
discretization bin. Those counts are used to estimate P (xj |Ck).

Algorithm 23: The algorithm to compute P (xj |Ck) for numeric at-
tribute xj and class k at a given leaf.

input : BTree: Binary Tree for attribute xj
nrExs: Vector of the number of examples per Class
Xh: the highest value of xj observed at the Leaf
Xl: the lowest value of xj observed at the Leaf
Nj : the number different values of xj observed at the Leaf

output: Counts The vector of size Nintervals with the percentage of
examples per interval;

begin
if BTree == NULL then return 0;
/* number of intervals */

Nintervals← min(10, |BTree|);
/* interval range */

inc← Xh−Xl
Nintervals ;

for i = 1 to Nintervals do
Counts[i]← LessThan(xl + inc ∗ i, k, BTree) ;
if i > 1 then

Counts[i]← Counts[i]− Counts[i− 1] ;
if xj ≤ Xl + inc ∗ i then

return Counts
nrExs[k] ;

else if i == Nintervals then
return Counts

nrExs[k] ;

We should note that, the use of naive Bayes classifiers at tree leaves does
not introduce any overhead in the training phase. In the application phase
and for nominal attributes, the sufficient statistics contains all the informa-
tion for the naive Bayes tables. For continuous attributes, the naive Bayes
contingency tables are efficiently derived from the Btree’s used to store the
numeric attribute-values. The overhead introduced is proportional to depth
of the Btree, that is at most log(n), where n is the number of different values
observed for a given attribute in a leaf.

8.3.3 Concept Drift

Nodes in a decision tree correspond to hyper-rectangles in particular re-
gions of the instance space. The whole decision tree divides the instance space

128 Knowledge Discovery from Data Streams

into nested regions. The root node covers all the instance space, and subse-
quent nodes in the structure cover sub-regions of the upper nodes. Using the
tree structure we can have views of the instance space at different levels of
granularity.

This is of great interest in time-changing environments because a change or
a concept drift, may affect only some region of the instance space, and not the
instance space as a whole. When drift occurs, it does not have impact in the
whole instance space, but in particular regions. Adaptation of global models
(like naive Bayes, discriminant functions, SVM) requires reconstruction of the
decision model. Granular decision models (like decision rules and decision
trees) can adapt parts of the decision model. They need to adapt only those
parts that cover the region of the instance space affected by drift. In decision
models that fit different functions to regions of the instance space, like Decision
Trees and Rule Learners, we can use the granularity of the model to detect
regions of the instance space where change occurs and adapt the local model,
with advantages of fast adaptation. Nodes near the root should be able to
detect abrupt changes in the distribution of the examples, while deeper nodes
should detect localized, smoothed and gradual changes.

We should distinguish between the task of detect a change from the task
of reacting to a change. In this section we discuss methods that exploit the
tree structure to detect and react to changes.

8.3.3.1 Detecting Changes

The observation that Hoeffding trees define time-windows over the stream
lead to a straightforward change detection method: compare the distribution
of the target attribute between a node and the sum of distribution in all
leaves of the sub-tree rooted at that node. The techniques presented in Kifer
et al. (2004) for comparing two distributions, can be used for this purpose.
We should note that maintaining appropriate sufficient statistics at each node
enables the test to be performed on the fly whenever a new labeled example
is available. This strategy was used in Gama et al. (2006).

Figure 8.4 presents the path of an example traversing a tree. Error distri-
butions can be estimated in the descending path or in the ascending path. In
the descending path, the example is classified at each node, as if that node was
a leaf. In the ascending path, the class assigned to the example is propagate
upwards.

Comparing the distributions is appealing but might lead to relatively high
time delay in detection. A somewhat different strategy, used in Gama and
Medas (2005), exhibit faster detection rates. The system maintains a naive-
Bayes classifier at each node of the decision tree. The drift detection algorithm
described in Chapter 3.3 monitors the evolution of the naive-Bayes error rate.
It signals a drift whenever the performance goes to an out-of-control state.

Decision Trees from Data Streams 129

Figure 8.4: Illustrative example of an example traversing the tree: error
statistics can be estimated both in the descending path (from the root to
a leaf) or in the ascending path (from the leaf to the root).

8.3.3.2 Reacting to Changes

After detecting a change, we need to update the decision model. Several
adaptation methods have been proposed. A first observation is that Hoeffding
trees self-adapt to the most recent data. Suppose an abrupt change at a certain
point in time. The leaves start receiving examples from a different distribution.
Whenever a leaf is expanded the newly generated leaves receive examples from
the most recent distribution. The degradation in performance is not so high as
one can expect. The most relevant problem is that the decision model becomes
much more complex (in terms of number of leaves) than necessary. Figure 8.5
illustrates this aspect.

A natural method to adapt the decision model is to prune the subtree
rooted at the node that detects a change. This strategy is in favor to deci-
sion models more consistent with the current state of the nature. It can be
somewhat drastic, for example if change is detected by the root. It means
that changes occur in all the instance space. Pruning can lead to a decrease
in performance while the tree does not fully recover from the surgery.

To avoid this last problem, Hulten et al. (2001) presented the CVFDT algo-
rithm. CVFDT is an extension to VFDT designed for time-changing data streams.
CVFDT generates alternate decision trees at nodes where there is evidence that
the splitting test is no longer appropriate. The system replaces the old tree
with the new one when the latter becomes more accurate.

130 Knowledge Discovery from Data Streams

(A) (B)

(C) (D)

Figure 8.5: The Hyper-plane problem: two classes and by two continuous
attributes. The dataset is composed by a sequence of points first from concept-
1 (A) followed by points from concept 2 (B). The second row present the
projection of the final decision tree over the instance space. Figure C is the
tree without adaptation, Figure D is the pruned tree after detection of a
change. Although both have similar holdout performance, the pruned tree
represents much better the current concept.

8.3.4 Final Comments

The basic algorithm can include features like the ability to initialize a
VFDT tree with a tree produced by a conventional algorithm, or the ability
to deactivate all less promising leaves in the case when the maximum of the
available memory is reached. Moreover, the memory usage is also minimized,
by ignoring attributes that are less promising.

In general, functional leaves have been shown to improve performance of
decision trees. In VFDT like algorithms, all the statistics required by the split-
ting criteria can be computed incrementally. Moreover we can directly derive
naive Bayes classifiers from the sufficient statistics. Naive Bayes classifiers can
be used in leaves to classify test examples, and in inner decision nodes to
detect drift.

Very Fast Decision Tree based algorithms share all the properties of stan-
dard univariate trees:

Decision Trees from Data Streams 131

• Interpretability. Global and complex decisions can be approximated by a
series of simpler and local decisions. All decisions are based on the values
of the attributes used to describe the problem. Both aspects contribute
to the popularity of decision trees.

• Robustness. Univariate trees are invariant under all (strictly) monotone
transformations of the individual input variables. For example using
xj , log xj , or exj as the jth input variable yields the same structural
result. There is no need to consider input variable transformations. As a
consequence of this invariance, sensitivity to long tail distributions and
outliers are also reduced (Friedman, 1999).

They have other desirable properties that are specific to this algorithm:

• Stability. Stability refers to the ability of an algorithm to generate similar
decision models when trained with similar training sets. This is a key
characteristic of VFDT like algorithms that make them different from the
usual greedy hill-climbing decision tree algorithm. The decision which
test to install at each splitting node must satisfy statistical criterion: the
Hoeffding bound. This feature ensures model stability for permuted data
and low variance. On the other hand, methods like bagging which are
very efficient in reducing variance are no more effective with Hoeffding
trees.

• Any-time classifiers. The standard top-down induction of decision trees
algorithm expands a tree using a depth strategy (Quinlan, 1993; Breiman
et al., 1984). The side effect of this strategy is that trees are highly un-
balanced during growing process. Decision trees can be used as classifier
only at the end of the growing process. VFDT expands a leaf when there is
strong evidence in favor of a particular splitting-test. The tree growing
process is more balanced. This characteristic is in favor to the any-time
classifier.

• Convergence. Domingos and Hulten (2000) show that the trees produced
by the VFDT algorithm are asymptotically close to the ones generated by
a batch learner.

8.4 OLIN: Info-Fuzzy Algorithms

Many batch and online learning methods use the information theory to
induce classification models. One of the batch information-theoretic methods,
developed by Last (2002), is the Info-Fuzzy Network algorithm (also known
as Information Network - IFN). IFN is an oblivious decision-tree classification

132 Knowledge Discovery from Data Streams

Figure 8.6: An illustrative example of a Two-Layered Info-Fuzzy Network
Structure.

model designed to minimize the total number of predicting attributes. The un-
derlying principle of the IN-based methodology is to construct a multi-layered
network in order to maximize the Mutual Information (MI) between the input
and the target attributes. Each hidden layer is uniquely associated with a spe-
cific predictive attribute (feature) and represents an interaction between that
feature and features represented by preceding layers. Unlike popular decision-
tree algorithms such as CART and C4.5, the IFN algorithm uses a pre-pruning
strategy: a node is split if the split leads to a statistically significant decrease
in the conditional entropy of the target attribute (equal to an increase in the
conditional mutual information). If none of the remaining candidate input
attributes provides a statistically significant increase in the mutual informa-
tion, the network construction stops. The output of the IFN algorithm is a
classification network, which can be used as a decision tree to predict the
value (class) of the target attribute. For continuous target attributes, each
prediction refers to a discretization interval rather than a specific class.

The OLIN algorithm extends the IFN algorithm for mining continuous and
dynamic data streams (Cohen et al., 2008). The system repeatedly applies the
IFN algorithm to a sliding window of training examples and changes the size
of the training window (and thus the re-construction frequency) according to
the current rate of concept drift. The purpose of the system is to predict, at
any time, the correct class for the next arriving example. The architecture of
the OLIN-based system is presented in Figure 8.7.

The online learning system contains three main parts: the Learning Module
is responsible for applying the IN algorithm to the current sliding window of

Decision Trees from Data Streams 133

Figure 8.7: OLIN-based System Architecture.

examples; the Classification Module is responsible for classifying the incoming
examples using the current network; and the Meta Learning Module controls
the operation of the Learning Module. As shown in Figure 8.7, the system
builds a network from T0 training examples; afterwards, the next V0 examples
are classified according to the induced network. According to the regenerative
approach of OLIN, when more examples arrive, a completely new network is
built from the most recent T1 examples, where the last example belonging to
T1 is also the last example of V0. In order to ensure that each example in
the data stream will be classified only once, the validation intervals have to
be disjoint and consecutive. After constructing a new network, the set V1 is
classified using that network. This regenerative process continues indefinitely
if the data stream never stops. The Meta Learning module gets as input
the error rates of the training and the validation examples classified by the
current IN model. Those error rates are denoted as Etr and Eval respectively.
In addition, it gets the description of the model itself (selected attributes,
entropy information, etc.). Using all these inputs, the module re-calculates
the size of the next training window (interval) and the number of validation
examples to be classified by the next model. The OLIN system is based on
the assumption that if the concept is stable, the training and the validation

134 Knowledge Discovery from Data Streams

examples, should conform to the same distribution. Thus, the error rates in
classifying those examples using the current model should not be significantly
different. On the other hand, a statistically significant difference may indicate
a possible concept drift. The variance of the differences between the error rates
is calculated by the following formula based on a Normal Approximation to
the Binominal distribution:

V ar Diff =
Etr(1− Etr)

W
+
Eval(1− Eval)
Add Count

whereW is the size of the training window and Add Count is the number of
validation examples. The algorithm tests the null hypothesis that the concept
is stable, in which case the maximum difference between the training and
validation error rates, at the 99% confidence level is:

Max Diff = Z0.99

√
V ar Diff = 2.326

√
V ar Diff

A concept drift is detected by the algorithm when the difference between
the error rates is greater than Max Diff implying that the null hypothesis
can be rejected. In that case, the algorithm re-calculates the size of the next
training window using the following formula:

W =
χ2
α(NIi − 1)(NT − 1)

2ln2(H(T)−H(Etr)− Etrlog2(NT − 1))

where α is the significance level sign used by the network construction
algorithm (default: α = 0.1%), NIi is the number of values (or discretized
intervals) for the first input attribute Ai in the info-fuzzy network, NT is
the number of target values, H(T) is the entropy of the target, and Etr is
the training error of the current model. In addition, the number of examples
in the next validation interval is reduced by Red Add Count. Otherwise, the
concept is considered stable and both the training window and the validation
interval are increased by Add Count examples up to their maximum sizes of
Max Add Count and Max Win, respectively.

8.5 Notes

Decision trees are one of the most studied methods in Machine Learning.
The ability to induce decision trees incrementally appears in the Machine
Learning community under several designations: incremental learning, online
learning, sequential learning, theory revision, etc. In systems like ID4 (Van de
Velde, 1990), ITI (Utgoff et al., 1997), or ID5R (Kalles and Morris, 1996), a
tree is constructed using a greedy search. Incorporation of new information

Decision Trees from Data Streams 135

involves re-structuring the actual tree. The re-structuring procedure requires
maintaining examples at leaves.

A somewhat related work in scalable algorithms for decision trees appears
in (Mehta et al., 1996; Shafer et al., 1996; Gehrke et al., 1999; Dobra and
Gehrke, 2002; Gehrke et al., 2000). In 90’s, the SLIQ (Mehta et al., 1996) and
SPRINT (Shafer et al., 1996) algorithms avoid re-sorting attributes using ver-
tical partitioning and maintenance of sort orders. Later on, Rainforest (Gehrke
et al., 2000) and Boat (Dobra and Gehrke, 2002) developed strategies that do
not require all data to fit in main memory. Nevertheless, both Rainforest and
Boat require scanning the data more than once.

Few incremental regression trees have been presented in the literature.
A notable exception is the work of Potts and Sammut (2005). Ikonomovska
and Gama (2008) present a VFDT like algorithm for regression, extended later,
in Ikonomovska et al. (2009), to deal with non-stationary streams.

Unlike decision trees, rule learners do not need to model all the instance
space. Ferrer-Troyano, Aguilar-Ruiz, and Riquelme (2005, 2006) present an
incremental rule learning from numerical data streams. Their system FACIL

learn decision rules from numerical data streams. Rules may store up-to-date
border examples to avoid unnecessary revisions. The system uses a forgetting
heuristic that removes border examples and also removes rules based on how
old they are.

136 Knowledge Discovery from Data Streams

Chapter 9

Novelty Detection in Data Streams

Novelty detection is a learning task that consists of the identification of new
or unknown concepts that the learning system is not aware of during training.
This is one of the fundamental requirements of a good classification or iden-
tification system, since sometimes the test data contain information about
concepts that were not known at the time of training the model. In time-
dependent applications, novelty detection represents an important challenge,
since concepts are hardly ever constant. This chapter surveys the major ap-
proaches for the detection of novelty in data streams1.

9.1 Introduction

Novelty detection makes possible to recognize novel profiles (concepts)
in unlabeled data, which may indicate the appearance of a new concept, a
change occurred in known concepts or the presence of noise. The discovery
of new concepts has increasingly attracted the attention of the knowledge
discovery community, usually under the terms novelty (Marsland, 2003) or
anomaly detection. It is a research field somewhat related to statistical outlier
detection (Barnett and Lewis, 1995). Since to be able to detect novelty the ML
technique must allow the learning of a single target or normal concept, the
terms one-class (Tax, 2001) or single-class classification are also frequently
used. The absence of negative examples, which would represent the unknown
novelty in this scenario, makes it hard for the induction algorithm to establish
adequate decision boundaries and, thus, to avoid the extremes of underfitting
and overfitting. This problem has also been studied under the term learning
from positive-only examples.

Besides recognizing novelty, a learning environment that considers the time
variable also imposes that the ML technique be able to identify changes oc-
curred in the known or normal concept, which has been addressed under the
term concept drift (see Chapter 3.3).

This chapter reviews the major approaches for the detection of novelty in
data streams.

1Based on joint work with Eduardo Spinosa and Andre de Carvalho.

137

138 Knowledge Discovery from Data Streams

9.2 Learning and Novelty

Learning and novelty are two intrinsically linked concepts. In general, a
stable state of awareness, characterized by the resurgence of known stimuli
leading to known responses, does not motivate learning. It is incompatible with
most real applications, in which concepts are hardly ever permanent. Only
a disturbance, i.e., something new that introduces unknown characteristics,
may be capable of motivating reasoning for explanations in a search that is
itself a learning process. Therefore, the ability to identify novelty is a key to
continuous learning. And such ability relies on two basic components: firstly,
a description of the current state of awareness, i.e., a representation of the
normal behavior; and secondly, a constant action of verifying the compatibility
between the characteristics of new stimuli and those of the normal state.

Informally, the word novelty indicates something new or unknown. How-
ever, a proper definition of novelty in the context of data mining requires
attention to some details in order to avoid confusion with other related con-
cepts. Firstly, novelty should be regarded as a concept, i.e., an abstraction
of instances that share characteristics. A concise group of examples should
be required as an evidence of the appearance of a novel concept, or novelty.
On the other hand, sparse independent examples whose characteristics differ
greatly from those that define what is normal, should be regarded simply as
outliers, since there is no guarantee that they represent concepts. They might
simply be the consequence of noise, for instance. Examples that do not fit
the current definition of normal, are denominated unknown. This allows us to
distinguish between two different areas of research known as outlier detection
(Barnett and Lewis, 1995) and novelty detection (Marsland, 2003).

Given that perspective, novel concepts emerge from the set of examples
not currently explained by the normal model, here denominated unknown.
Thus, the complement of normal is unknown, not novelty. Novelty emerges
from what is still unknown, but being unknown is not a sufficient condition
for the identification of a novel concept. Hence, a possible definition of Nov-
elty Detection from the inductive machine learning perspective would be: the
algorithm’s ability to identify data profiles that emerge from the universe of
examples that are not explained by the current representation of the normal
behavior.

Anomaly is another term sometimes associated with novelty. It usually
indicates that the novel concept we wish to identify represents an abnormal
event in a specific domain or application, such as a machine fault, for instance.
Even though it is often the case, we shall avoid making that assumption and
regard anomaly detection as a specialization of novelty detection. Keeping
novelty a general concept, allows us to incorporate other occurrences under
novelty detection which are also relevant in the context of online learning,
such as the appearance of a new class or subclass.

Novelty Detection in Data Streams 139

These techniques are useful in applications such as fault detection (King
et al., 2002), radar target detection (Carpenter et al., 1997), statistical process
control (Guh et al., 1999), etc. Terms such as surprising events or bursts (Vla-
chos et al., 2005) are also used to indicate novelty.

9.2.1 Desiderata for Novelty Detection

Markou and Singh (2003) identifies important issues related to novelty
detection and enumerates desirable properties for novelty detection methods:

• Principle of robustness and trade-off: A novelty detection method
must be capable of robust performance on test data that maximizes
the exclusion of novel samples while minimizing the exclusion of known
samples.

• Principle of generalization: The system should be able to generalize
without confusing generalized information as novel (Tax, 2001).

• Principle of independence: The novelty detection method should be
independent of the number of features, and classes available. It should
also show reasonable performance in the context of imbalanced dataset,
and noise.

• Principle of adaptability: A system that recognizes novel samples
during test should be able to use this information for learning new con-
cepts (Saunders and Grace, 2008).

• Principle of computational complexity: A number of novelty detec-
tion applications are online and, therefore, the computational complexity
of a novelty detection mechanism should be as low as possible.

We can identify two main lines where novelty detection concepts are used:

• The decision model act as a detector. The requirement is to detect
whether an observation is part of the data that the classifier was trained
on or it is in fact unknown.

• The decision model is able to learn new characteristic descriptions of
the new concepts that appear in the test examples.

9.3 Novelty Detection as a One-Class Classification Prob-
lem

In most approaches to novelty detection the objective is to define whether
an unseen example represents the normal behavior or not. The decision model

140 Knowledge Discovery from Data Streams

has knowledge about a single concept, the normal behavior of the system.
New unlabeled examples may be identified as members of that profile or not.
This context lies in the fact that examples of abnormal behaviors are usually
scarce or not available, since in most applications it is hard and expensive to
simulate abnormal scenarios. Besides that, it would be infeasible to simulate
all possible abnormal situations. For that reason, novelty detectors can rely
only on examples of a single profile that represents the normal behavior, hence
the terms one-class, single-class classification, or learning from positive-only
examples.

Several machine learning techniques have been adapted to work in a one-
class scenario. One-class classification techniques are learning methods that
proceed by recognizing positive instances of a concept rather than discrim-
inating between its positive and negative instances. This restriction makes
it a more difficult challenge to obtain an adequate level of generalization,
since counter-examples play an important role in that task. A general method
consists of estimating the probability density function of a normal class, for
example using Parzen windows, and a rejection threshold.

9.3.1 Autoassociator Networks

Japkowicz et al. (1995) presents an approach that consists of training a
neural-network trained to reconstruct positive input instances at the output
layer (See Figure 9.1). Classification is possible, after training, because positive
instances are expected to be reconstructed accurately while negative instances
are not.

The base idea explores the ability of the backpropagation algorithm to
discover useful intermediate representations at the hidden unit layers inside
the network. Japkowicz et al. (1995) proposal consists of training a three layer
network, where the number of neurons in the output layer is equal to the input
layer. Using the backpropagation algorithm, the network is trained to learn
the simple target function f(~x) = ~x, in other words, the network is trained to
reproduce the input at the output layer.

Assume an autoassociator network trained from positive instances only.
Classification is possible because positive instances are expected to be recon-
structed accurately while negative instances are not.

To classify an unlabeled example ~x, the example is propagated through the
network. Let ~y be the corresponding output. The square error,

∑k
i (xi − yi)2,

for positive examples should be low, while negative examples should have high
squared error. The decision rule to reject an example is:

If
∑k
i (xi−yi)2 < Threshold Then the example is considered from

the positive class. Otherwise, ~x is a counter-example of the positive
class.

The threshold, might be defined by a user, and controls the trade-off be-
tween fast detection and false alarms rate. As alternative, it can be learned

Novelty Detection in Data Streams 141

Figure 9.1: Architecture of a neural network for one-class classification. The
network is trained, using the backpropagation algorithm, to reproduce the
input at the output layer.

from a set of independent positive and negative examples.

9.3.2 The Positive Naive-Bayes

The positive naive Bayes (Denis et al., 2005) is an adaptation of the naive
Bayes induction algorithm to the positive unlabeled learning context. This
algorithm estimates the parameters of a naive Bayes model from positive and
unlabeled examples.

Given the Bayes rule, and under the assumption of conditional indepen-
dence between all the predicting variables given the class, we have that, for a
given instance x

P (C = c|X) ∝ P (C = c)

n∏
i=1

P (Xi = xi|C = c)

The parameters required to define a two-class naive Bayes model are p =
P (C = 1), P (xij |1) = P (Xi = j|C = 1) and P (xij |0) = P (Xi = j|C = 0) for
all i = 1, . . . , n and j = 1, ..., ri. In the classical naive Bayes algorithm these
parameters are estimated from the data by maximum likelihood estimators,
but in the positive unlabeled learning context the absence of negative examples
makes it unfeasible to estimate P (xij |0) and p from the data. However, if we
take into account that

P (xij |0) =
P (xij)− P (xij |1)× p

1− p

142 Knowledge Discovery from Data Streams

where P (xij) stands for P (Xi = j).
Assuming that p is known, we can estimate P (xij |0) as:

Uij − P (xij |1)× p× U
(1− p)U

where Uij is the number of unlabeled examples with Xi = j and U the cardi-
nality of the unlabeled examples.

The problem with this estimator is that it can be negative. Calvo et al.
(2007) solve the problem by replacing the negative estimations by 0, and then
normalizing all the probabilities such that, for each variable Xi, they sum to
1:
∑n
j=1 P (xij |0) = 1.

P (xij |0) =
1 +max(0;Uij − P (xij |1)× p× U)

2 + (1− p)U
. (9.1)

To summarize, the positive naive Bayes estimates P (xij |1) from the posi-
tive examples by means of a maximum likelihood estimator, p is a parameter
set by the user, and P (xij |0) is estimated by means of equation 9.1.

Calvo et al. (2007) extend this approach to more complex networks, in-
cluding Tree Augmented naive Bayes classifiers.

9.3.3 Decision Trees for One-Class Classification

Denis, Gilleron, and Letouzey (2005) extend the ideas of the previous sec-
tion to estimate the information gain in decision tree learning from positive
and unlabeled examples. Let POS be the set of positive examples, and denote
by UNL the set of unlabeled examples. At a node n, the set of positive exam-
ples is POSn and the set of unlabeled examples is UNLn. Assuming that the
frequency of positive examples in the unlabeled set is PosLevel, the entropy
of a particion is computed as:

p1 = |POSn|
|POS| ×

|UNL|
|UNLn| × PosLevel

p0 = 1− p1

H(n) = −p0 × log2(p0)− p1 × log2(p1)

G(n, s) = H(n)−
∑
i
|UNLni|
|UNLn| ×H(n, i)

Li, Zhang, and Li (2009) present a VFDT like algorithm for one-class clas-
sification, using these equations. Given that the PosLevel is unknown, the
authors enumerate nine possible values of PosLevel, from 0.1 to 0.9 and learn
nine different trees. The best tree is chosen by estimating the classification
performance of the trees with a set of validating samples.

9.3.4 The One-Class SVM

Let the set of training examples be {(xi, yi)}n, where xi is an input vector
and yi ∈ {−1,+1} is its class label. Assume that the first k − 1 examples are

Novelty Detection in Data Streams 143

Actual
Pos Neg

Pos TP FP
Predict

Neg FN TN

Table 9.1: Confusion matrix to evaluate one-class classifiers.

positive examples (labeled +1), while the rest are unlabeled examples, which
we label −1. If the sample size is large enough, minimizing the number of unla-
beled examples classified as positive while constraining the positive examples
to be correctly classified will give a good classifier. The following soft margin
version of the Biased-SVM (Liu et al., 2003) formulation uses two parameters
C+ and C− to weight positive errors and negative errors differently:

Minimize:
1

2
wtw + C+

k−1∑
i=1

ξi + C−

n∑
i=k

ξi

Subject to: yi(w
Txi + b) ≥ 1− ξi, i = 1, 2, . . . , n and ξi ≥ 0, i = 1, 2, . . . , n

Intuitively, we give a big value for C+ and a small value for C− because the
unlabeled set, which is assumed to be negative, also contains positive data.

9.3.5 Evaluation of One-Class Classification Algorithms

The most straight forward evaluation of a novelty detection technique can
be done by the analysis of a pair of error rates: one due to examples of the
normal concept which have been wrongfully identified as members of an un-
known profile, which may be called false-unknown error rate, and another
due to examples of unknown profiles which have been wrongfully identified as
members of the normal concept, which may be called false-normal error rate.

Consider the confusion matrix given in Table 9.1, where:

• True positive (TP): Positive examples correctly classified as positive;

• False positive (FP): Negative examples wrongly classified as positive;

• False negative (FN): Positive examples wrongly classified as negative.

• True negative (TN): Negative examples correctly classified as negative;

The relevant performance statistics are:

• Precision = TP
TP+FP

• Recall = TP
TP+FN (or Sensitivity)

• Specificity = TN
TN+FP

144 Knowledge Discovery from Data Streams

Figure 9.2: Illustrative examples of Precision-Recall and ROC graphs.

Precision can be seen as a measure of exactness; Recall is a measure of com-
pleteness. In a classification task, a Precision score of 1.0 for a class C means
that every item labeled as belonging to class C does indeed belong to class
C (but says nothing about the number of items from class C that were not
labeled correctly) whereas a Recall of 1.0 means that every item from class C
was labeled as belonging to class C (but says nothing about how many other
items were incorrectly also labeled as belonging to class C). The best possible
prediction method would yield a point in the upper right corner or coordinate
(1,1), representing 100% Precision and 100% Recall.

Usually, Precision and Recall scores are not discussed in isolation. Instead,
both are combined into a single measure, such as the F-measure, which is the
weighted harmonic mean of precision and recall:

F measure =
(w + 1)×Recall × Precision
Recall + w × Precision

a weight of 1, leads to the F1 measure:

F1 =
2× Precision×Recall
Precision+Recall

The receiver operating characteristic (ROC curve), is a graphical plot of
the sensitivity vs. specificity for a binary classifier system as its discrimination
threshold is varied. The ROC is obtained by plotting the fraction of true posi-
tives vs. the fraction of false positives as the criterion threshold changes (Hand
and Till, 2001). The best possible prediction method would yield a point in
the upper left corner or coordinate (0, 1) of the ROC space, representing 100%
sensitivity (no false negatives) and 100% specificity (no false positives).

Novelty Detection in Data Streams 145

9.4 Learning New Concepts

The fact that data is intrinsically time-dependent imposes the use of a
flexible model and a learning strategy that enables both the updating of old
concepts and the inclusion of new ones. Biologic brains possess an extraordi-
nary capability for molding its structure to change and to incorporate knowl-
edge. For machines, however, this is a more complicated task, and it possibly
represents the most important challenge currently faced by Machine Learning
researchers.

The central problem of novelty detection lies in the definition of unknown
or surprising profiles. The decision of whether a new example should or should
not be considered normal depends fundamentally on the domain, which makes
it hard to develop a general approach that performs well in different applica-
tions. Furthermore, such a decision may depend on even less tangible aspects,
i.e., what one considers normal may not be for someone else.

The challenge of designing novelty detectors that adequately identify novel
scenarios, while still reliably recognizing the normal condition, may be tack-
led in different ways. This section describes the major approaches and trends
in data streams. Even though our main focus is on online learning from
data streams, some techniques involving, for instance, time series and large
databases, were also included. Even though not all of them may perform online
detection and updating of the model which represents the normal concept, the
similar nature of the data imposes limitations whose investigation may con-
tribute to the study of data streams.

9.4.1 Approaches Based on Extreme Values

The detection of bursts in time series is an important research topic, since
it may indicate abnormal conditions in various applications, such as the de-
tection of network intrusions or disease outbreaks. Given a time series, the
simplest way to identify an outlier is to compare its value to a predefined
threshold that acts as a limit between what is expected and what represents
surprise.

This strategy has been applied for the identification of correlated burst
patterns in multiple time series (Vlachos et al., 2005). The fact that abnormal
conditions are correlated reinforces the evidence of an unexpected event at a
certain time interval. In this approach, different values for the threshold τ that
determines bursts are calculated for each portion of the series, considering that
the data in each portion maintains an exponential distribution, characteristic
of the financial data used in that work. Once several burst intervals have been
identified, the work proceeds to the discovery of overlapping burst regions. For
that task, an efficient index structure is adapted from the notion of contain-
ment encoded intervals (CEI). In CEI-based indexing, almost all operations

146 Knowledge Discovery from Data Streams

can be performed using integer additions and logical shifts, making it both
faster and more cost-effective than other alternatives (Wu et al., 2004).

9.4.2 Approaches Based on the Decision Structure

The problem of change detection in data streams may also be faced by
considering that, in a standard multiple-class classification problem, the con-
tribution of each decision unit in the classifier is likely to remain stable if no
changes are observed in the process which is being monitored. A shift that oc-
curs in the statistics of decision units indicates that the current model might
be undergoing a conceptual change.

Fan, Huang, Wang, and Yu (2004) evaluate the use of two observable
statistics in a decision tree classifier, obtained on the leaves, to detect poten-
tial changes in data streams. The first statistic, PS, computes the number
of examples classified by each leaf and compares these values to the respec-
tive ones obtained on the training phase. Assume that dt is a decision tree
constructed from a training set D. The examples in the data stream S are
classified by a unique path from the root to a leaf node. Assume that nl is the
number of instances classified by leaf l and the size of the data stream is N .
Define the statistics at leaf l as:

P (l) =
nl
N

The sum over all leafs in the tree is
∑
l∈dt P (l) = 1. P (l) describes how

the instance space of the data stream S is shattered among the leaf nodes
solely based on attribute test results of a given decision tree dt. It does not
consider either the true class labels or attributes that is not tested by dt. If
the combination of attributes values in the data stream S is different from the
training set, it will be reflected in P (l). The change of leaf statistics on a data
stream is defined as:

PS =

∑
l∈dt |PS(l)− PD(l)|

2

The increase in P (l) of one leaf is contributed by decrease in at least one other
leaf. This fact is taken into account by dividing the sum by 2. When there
are significant changes in the data stream, particularly distribution drifts, the
PS statistic is likely to be high.

A second statistic, LS, is obtained by comparing the error rate obtained
in a validation set La, to the sum of the expected error rate at every leaf Le,
considering the proportion of examples classified by each of them:

LS = |La − Le|

Experimental evaluation on a credit card fraud data set demonstrates that
both PS and LS are well correlated with the amount of change in the data
stream. The fact that these statistics do not require labeled data is pointed
by the author as an advantage over previous related works.

Novelty Detection in Data Streams 147

9.4.3 Approaches Based on Frequency

One way to concretize the notion of surprise in the search for unusual
patterns is to associate it to its frequency. In that sense, a pattern would be
considered surprising or anomalous if “the frequency of its occurrence differs
substantially from that expected by chance, given some previously seen data”
(Keogh et al., 2002). This definition should not be confused with that of motifs,
which are patterns that appear very frequently, i.e., are overrepresented.

Given that perspective, the TARZAN algorithm (Keogh et al., 2002) was
developed to discover surprising patterns in time series in linear space and
time. Given a test series X, TARZAN identifies subsequences of X whose
frequency of occurrence exceeds what is expected, given a reference series R.
Initially, both series are discretized using a process known as the Symbolic
Aggregate approXimation (SAX) (Lin et al., 2003) 2, resulting in two strings
x and r. Then, for each string, subsequences are identified, and their respec-
tive frequencies are calculated and stored in two suffix trees Tx and Tr, which
can be efficiently accessed. By directly comparing these trees, a surprise value
z(w) is obtained for each substring w in Tx, by subtracting its expected num-
ber of occurrences from the observed number of occurrences. The expected
frequencies are either obtained in Tr, if the w exists in Tr, or estimated by
Markov models. Finally, TARZAN identifies the substrings whose z(w) ex-
ceeds a threshold defined by the user.

Experimental evaluation of TARZAN was performed in terms of sensitiv-
ity and selectivity, using synthetic data consisting of a noisy sine wave, and
real data representing the power demand of a research facility for the period
of one year. In terms of sensitivity, TARZAN was compared to i) IMM, a
novelty detection strategy based on negative selection that takes place in nat-
ural immune systems (Dasgupta and Forrest, 1996) and ii) TSA-tree (Shahabi
et al., 2000), a wavelet-based system developed to address surprise and trend
queries on time series. Considering the proposed problem of finding an irregu-
lar week in terms of power consumption, TARZAN was successful while IMM
and TSA-tree failed.

TARZAN was developed in the context of static time series databases,
requiring whole time series to be loaded prior to processing. In an online data
stream scenario, where the time series could potentially be infinite, several
restrictions would apply, as described in Section 5.2.

VizTree (Lin et al., 2004) uses the approach of TARZAN, but aims mainly
at the visualization of non-trivial patterns. It also applies SAX for the dis-
cretization and representation, stressing the fact that, when compared to other
representation schemes, SAX is as good or better at representing similarities,
which is an important feature in anomaly detection. VizTree displays the tree
of subsequences using the thickness of branches to represent the frequency
of each pattern. With that, the user can identify anomalies in a single time
series, by visually exploring less frequent branches, or in two time series, by

2SAX is described in Section 11.4.

148 Knowledge Discovery from Data Streams

visualizing the difference tree as obtained by TARZAN. VizTree was tested
on a time series obtained from images of yoga postures, power consumption
and ECG data.

9.4.4 Approaches Based on Distances

By observing the distribution of examples on the feature space, several
conclusions can be taken regarding the data. It is possible, for instance, to
identify groups or clusters of examples and, if labels are available, examine
if their grouping and positioning has any semantical significance. A variety
of measures based on the positions of examples can be used to, among other
tasks, generate models to represent the data and make decisions regarding new
examples. This section focuses on the measures that can be used to identify
novelty and similar situations.

With the expansion of computer networks, mining streams of text emerged
as an important research area. In that scenario, the online identification of
the earliest report of a novel event, known as first story detection, can be ad-
dressed using novelty detection techniques. The high cost of comparing each
new document to all past documents motivated a two-level approach named
topic-conditioned novelty detection (Yang et al., 2002). New documents are
initially classified under general topics, using a standard supervised learning
algorithm. Novelty detection itself takes place on a second level, where one
detector is built for each topic. Upon receiving a new document, the detector
of the corresponding topic compares it to all documents in that topic’s his-
tory, finds its nearest neighbor and computes a cosine similarity score. The
threshold is empirically set based on cross validation. The two-level approach
offers the advantage of having defining different stop-word lists for each topic,
and results show that this approach substantially improved the performance
of novelty detection in this domain.

9.5 The Online Novelty and Drift Detection Algorithm

The OnLIne Novelty and Drift Detection (OLINDDA) (Spinosa et al., 2008,
2009) is a two stage algorithm, able to detect new concepts and changes in
previously learned concepts from unlabeled examples. In OLINDDA, the decision
model is a set of hyperspheres, defined by a centroid, a radius, and a label.

Learning in OLINDDA is divided in two phases. The two phases are described
in the following sections. Figure 9.3 provides an overview of the proposed
algorithm.

In the initial phase, the system learns a decision model using a labeled
training set. The set of labeled examples might be from a single class: the

Novelty Detection in Data Streams 149

Figure 9.3: Overview of the Online Novelty and Drift Detection Algorithm.

normal class. This initial phase is offline. The decision model, a set of hyper-
spheres labeled as normal, is learned using a k-means algorithm.

After learning the initial model, OLINDDA enters an online phase where the
system receives a stream of unlabeled examples. Each example is compared to
the current model. If any hypersphere covers the example, that is, the distance
between the example and the centroid of the hypersphere is lesser than the
radius, the example is classified using the label of the covering hypersphere.
Otherwise, since the current decision model cannot classify the example, it is
declared unknown and stored in a short term memory for further analysis later.
Time to time, the examples stored in the short term memory are analyzed. It
happens whenever the number of examples exceeds a user defined threshold.
The analysis employs again a standard clustering algorithm. OLINDDA looks
for clusters with a minimum density, and consider three different cases:

• Clusters that satisfy the density criteria and are far from known con-
cepts. They are declared novelties and added to the decision model with
new labels.

• Clusters that satisfy the density criteria and are close to known con-
cepts. They are declared extensions of existing concepts and added to
the decision model with the same label of the closest concept.

• Clusters that are sparse and do not satisfy the density criteria. They are
considered noise, thus, are not added to the decision model.

150 Knowledge Discovery from Data Streams

Figure 9.4: Illustrative example of the phases of OLINDDA algorithm. The
left figure is the result of the first phase. From labeled data, from the normal
class, OLINDDA finds 3 clusters. The figure in the middle, presents the points not
classified by the model that are stored in the short-term memory. By applying
clustering to the unlabeled examples in short-term memory, OLINDDA finds 2
valid clusters. One, is far away from the normal concept, so its declare a new
concept (right figure)

Three hypersphere-based models are used to store knowledge about (1)
the normal concept, (2) extensions to this normal concept and (3) novel con-
cepts. The normal model is the only static one, remaining as a reference to
the initial learning stage. It corresponds to what is usually employed by most
novelty detection techniques. The extension and novelty models can be con-
tinuously updated, allowing OLINDDA to deal with concepts that appear or
change over time. Once newly discovered concepts become part of these two
models, they will also help to explain future examples, thus reducing the cost
of exploring regions of the feature space that have already been explored. Ad-
ditionally, such an incremental structure allows the algorithm to start with a
basic description, weakening the requirement of an initial set that thoroughly
describes the normal concept.

OLINDDA makes use of a clustering algorithm. k-means is used by default
considering its low computational cost, an important aspect when dealing with
a large amount of data. Other algorithms, such as BIRCH (Zhang et al., 1996)
(described earlier in Chapter 6), may also be used.

9.5.1 Initial Learning Phase

The algorithm starts by modeling the normal or expected condition in the
domain under investigation by analyzing a set of normal examples. In the
problem of intrusion detection in computer networks, for instance, this initial
data set would be built from standard network traffic, without any examples
of attacks.

To model the normal concept, kini clusters are produced using the k-means
clustering algorithm. The normal model is composed of kini hyperspheres,
built in feature space, obtained directly from the clusters and represented by
their centers and radii. Each hypersphere center is the centroid of its cluster,

Novelty Detection in Data Streams 151

and its radius is the Euclidean distance from the centroid to the farthest
example of the respective cluster.

9.5.2 Continuous Unsupervised Learning Phase

Once the normal model is built, OLINDDA starts to analyze a stream of
unlabeled examples.

For each new example, the algorithm first checks whether it can be ex-
plained by the knowledge acquired until that point, represented by the models
previously described. If the coordinates of the example in feature space lie in-
side a hypersphere of any of the existing models, it is considered explained by
the corresponding model; statistics are updated, and the example is classified
and discarded. Otherwise, the example is marked as a member of an unknown
profile and moved to a short-time memory for further analysis.

Initially, OLINDDA is capable of distinguishing regions that correspond to
the normal concept (inside any of the hypersphere’s of the normal model) from
those that have not been explored yet, named unknown. In a stable situation,
the normal model is expected to explain the majority of the new examples.
As new concepts emerge and are added to the extension and novelty models,
it will also be able to explain examples of such concepts.

9.5.2.1 Identifying Novel Concepts

The proposed technique learns concepts initially as clusters formed by
examples previously considered unknown, that comply with certain restric-
tions. In order to discover these clusters, each time a new unknown example
is found, and the number of examples in the short-term-memory exceeds a
user defined parameter, k candidate clusters are generated from the examples
currently available at the short-term memory of unknown profiles. These can-
didate clusters are then evaluated to determine if any of them indicate the
appearance of a new concept, represented by a so-called valid cluster.

The validation criterion considers two basic characteristics: cohesiveness
and representativeness. Cohesiveness evaluates the degree of similarity be-
tween examples of a cluster. Three possible cohesiveness measures can be
used.

• Density. The density dens of a cluster ci is defined by:

dens(ci) =
n(ci)

vol(ci,m)
(9.2)

where n (ci) is the number of examples that belong to ci and vol (ci,m)
is the volume of the hypersphere whose radius r is the distance from
the centroid to the farthest example of ci. The volume vol (ci,m) in an
m-dimensional space is given by:

152 Knowledge Discovery from Data Streams

vol (ci,m) =
π
m
2 rm

Γ
(
m
2 + 1

) (9.3)

where Γ is the gamma function:

Γ
(m

2
+ 1
)

=

{ (
m
2

)
!, for even m;√

π m!!
2(m+1)/2 , for odd m.

(9.4)

This criterion may not be applicable to data sets with a large number of
attributes, once as m increases, vol (ci,m) tends to zero (Stibor et al.,
2006).

• Sum of squares of distances between examples and centroid
divided by the number of examples. The sum of squares of distances
between examples belonging to ci and the centroid µi is given by:

d (xj , µi) =
∑
xj∈ci

(xj − µi)2
(9.5)

Dividing it by the number of examples that belong to cluster ci, we
obtain a comparable measure d1:

d1 (xj , µi) =
d (xj , µi)

n (ci)
(9.6)

When k-means is chosen as the clustering algorithm, the use of this
measure is advantageous from the computational cost point of view,
since d(xj , µi) is already calculated in the clustering process.

• Average distance between examples and centroid. A simpler op-
tion is to use the average distance between examples and centroid, d2:

d2 (xj , µi) =

∑
xj∈ci

|xj − µi|

n (ci)
(9.7)

The cohesiveness threshold, that establishes the minimum cohesiveness de-
gree required of a candidate cluster, is defined by the normal model. If density
is chosen as the cohesiveness measure, a cluster is considered sufficiently co-
hesive if its density is equal to or higher than the minimum density of the
clusters of the normal model. If the cohesiveness measure is either the sum of
squares of distances between examples and centroid divided by the number of
examples, or the average distance between examples and centroid, the cluster
is considered sufficiently cohesive if the value of this measure is equal to or
lower than the maximum value of the same measure for the clusters of the
normal model.

Novelty Detection in Data Streams 153

The second aspect of the validation criterion concerns representativeness.
A small cluster may be very cohesive, but not representative enough to indicate
the appearance of a novel concept. In order to prevent that, candidate clusters
are required to have at least a minimum number of examples minexcl, defined
as a parameter. A value between 3 and 5 has been empirically determined as
adequate in most cases.

A candidate cluster that complies with both cohesiveness and representa-
tiveness restrictions is considered a valid cluster. Initially, all concepts consist
of a valid cluster. With time, as concepts can be merged, a concept may be
represented by a set of clusters. The merging of concepts will be discussed in
Section 9.5.2.3.

9.5.2.2 Attempting to Determine the Nature of New Concepts

Once a valid cluster is identified, OLINDDA proceeds to assess its similarity
to the normal concept. We consider that an extension of the normal concept
should naturally present some similarity to it, which in terms of distances in
feature space, means that the new concept should be located in the vicinity of
the region associated to the normal concept. Contrary to that, a new concept
which is dissimilar to normal may represent a novel concept, or novelty.

To materialize this notion of vicinity of the normal concept, the proposed
technique considers a hypersphere centered at the centroid of the centroids
of the clusters of the normal model, and whose radius is the distance to the
farthest centroid. If the centroid of the new valid cluster is located inside this
hypersphere, the new concept is labeled extension. Otherwise, it is considered
novelty.

As previously mentioned, newly discovered concepts update their corre-
sponding models, which facilitates the classification of future examples. As
models are composed mainly of the coordinates of centroids and radii besides
a few other distances and statistics, model updating is fast and performed in-
crementally, which is an important issue in applications involving, for instance,
data streams, where time and space constraints apply.

9.5.2.3 Merging Similar Concepts

A new valid cluster may itself represent a new concept. However, depending
on the data distribution, a concept may be more adequately described by a set
of clusters. For that reason, the similarity between the new valid cluster and
known concepts of the corresponding model is also evaluated. OLINDDA does
that by checking if the new cluster intercepts any of the existing clusters. If it
does not, the cluster is considered a new concept on its own and receives a new
label. However, if the new valid cluster intercepts one or more existing clusters,
they are grouped under the same label and their statistics are merged. A single
cluster may trigger a sequence of mergers, and this process tends to produce
a smaller number of concepts (labels) that are usually easier to analyze.

A typical experiment would be to present examples of a single class (repre-

154 Knowledge Discovery from Data Streams

senting the normal concept) in the initial phase, and allow OLINDDA to discover
the remaining classes as novel concepts. In that scenario, our final goal would
be to have produced a class structure as similar as possible to the real one,
and the merging of concepts helps directing the algorithm toward that.

9.5.2.4 Automatically Adapting the Number of Clusters

The number of clusters k is an intrinsic parameter of the clustering algo-
rithm. It is used to create the initial normal model, as described in Section
9.5.1, and to periodically generate candidate clusters in the online phase, as
described in Section 9.5.2.1.

In the initial model, k is fixed and defined as a parameter (kini), since it
depends on the data distribution. For the generation of candidate clusters in
the online phase, however, k is automatically adapted to optimize the chance of
discovering a valid cluster. This is done by increasing or decreasing k according
to certain conditions. If the value of k is lesser than the optimum, the algorithm
will generate clusters whose densities are lesser than the required threshold
for cluster validation. Opposed to that, if the value of k is greater than the
optimum, the candidate clusters will tend to have fewer examples than the
required minimum.

The automatic adaptation of k takes place after each iteration in which
candidate clusters were generated. If at least one candidate cluster is consid-
ered valid, the value of k is maintained. Otherwise, OLINDDA checks what
prevented each cluster from being accepted: too low density or too few ex-
amples. Then, considering the most frequent cause of failure for all candidate
clusters, it decides how to adapt the value of k. If the majority of failures is
due to low density, k is increased. If too few examples is the most frequent
cause of failure, k is decreased. After a few iterations, k tends to stabilize
around the optimum value that generates valid clusters.

9.5.3 Computational Cost

OLINDDA’s computational cost is influenced by several factors. Initially, the
cost of verifying whether a new example is explained by one of the existing
concepts depends on the total number of concepts of all models. For generating
candidate clusters, the cost depends on:

1. The number of examples identified as members of an unknown profile,
given that candidate clusters are only generated whenever an example
is identified as unknown;

2. The number of examples in the short-time memory of unknown profiles;

3. The cost of the clustering algorithm.

Finally, for checking if a newly discovered concept intercepts one of the existing
concepts, while updating models, the computational cost depends on the total
number of concepts of the extension and novelty models.

Novelty Detection in Data Streams 155

9.6 Notes

Novelty detection is an young and active research line. Traditional ap-
proaches to classification require labeled examples to train classifiers. Classi-
fiers predictions are restricted to the set of class-labels they have been trained.
In a data stream, when a new concept emerges, all instances belonging to this
new class will be misclassified until a human expert recognizes the new class
and manually label examples and train a new classifier. To empower machines
with the abilities to change and to incorporate knowledge is one of the greatest
challenges currently faced by Machine Learning researchers. We believe that a
way to confront such defiance is by approaching the detection of both novelty
and concept drift by means of a single strategy.

The relation and the frontiers between novelty detection and clustering
are still unclear. As in clustering, novelty detection learns new concepts from
unlabeled examples. Nevertheless, in contrast to clustering, novelty detection
systems has a supervised phase.

Fan et al. (2004) use active mining techniques in conjunction with a clas-
sifier equipped with a novelty detection mechanism. The examples rejected by
the novelty detection system are requested to be labeled by an expert. This
approach is useful in the context of data streams where the target label is not
immediately available but change detection needs to be done immediately, and
model reconstruction needs to be done whenever the estimated loss is higher
than a tolerable maximum.

156 Knowledge Discovery from Data Streams

Chapter 10

Ensembles of Classifiers

The term multiple models or ensemble of classifiers is used to identify a set
of classifiers which individual decisions are some way combined (typically by
voting) to classify new examples (Dietterich, 1997). The main idea behind
any multiple model systems is based on the observation that different learn-
ing algorithms explore different representation languages, search spaces, and
evaluation functions of the hypothesis. How can we explore these differences?
Is it possible to design a set of classifiers that working together can obtain a
better performance than each individual classifier? Multiple models are also
used in the context of dynamic streams, where the target concept may change
over time.

10.1 Introduction

Hansen and Salamon (1990) first introduced the hypothesis that an en-
semble of models is most useful when its member models make errors inde-
pendently with respect to one another. They proved that when all the models
have the same error rate, the error rate is less than 0.5, and they make errors
completely independently, then the expected ensemble error must decrease
monotonically with the number of models.

Figure 10.1 presents an example that clearly illustrates how and why an
ensemble of classifiers works. Figure 10.1(a) shows the variation of the error
rate obtained by varying the number of classifiers in an ensemble. This is a
simulation study, in a two class problem. The probability of observing each
class is 50%. A varying number of classifiers, from 3 to 24, are used to classify,
by uniform vote, each example. The classifiers have the same probability of
making an error, but errors are independent of one another.

We consider three scenarios:

• When it is equal to 50% (random choice) the error rate of the ensemble
stays constant;

• When it is 55% the error rate monotonically increases;

157

158 Knowledge Discovery from Data Streams

Figure 10.1: (a) Error rate versus number of classifiers in an ensemble. (b)
Probability that exactly n of 24 classifiers will make an error.

• When this probability is 45%, the error rate of the ensemble monotoni-
cally decreases.

This study illustrates a necessary condition:

The error of the ensemble decreases, respecting to each individual
classifier, if and only if each individual classifier has a performance
better than a random choice.

In Figure 10.1(b) each bar represents the probability that exactly i clas-
sifiers are in error. In that case we use an ensemble of twenty four classifiers,
each one having an error of 30%. Using uniform voting the ensemble is in
error, if and only if twelve or more classifiers are in error. If the error rates of
n classifiers are all equal to p (p < 0.5) and if the errors are independent, then
the probability that the majority vote is wrong can be calculated using the
area under the curve of a binomial distribution. We can estimate the probabil-
ity that more than n/2 classifiers are wrong (Dietterich, 1997). Figure 10.1(b)
shows this area for the simulation of twenty four classifiers. The area under
the curve for more than twelve classifiers is 2%, which is much less than the
error rate of the individual classifiers (30%).

Two models are said to make a correlated error when they both classify
an example of class i as belonging to class j, i 6= j. The degree to which
the errors of two classifiers are correlated might be quantified using the error
correlation metric. We define the error correlation between pairs of classifiers
as the conditional probability that the two classifiers make the same error
given that one of them make an error. This definition of error correlation lies
in the interval [0 : 1] and the correlation between one classifier and itself is 1.
The formal definition is:

Ensembles of Classifiers 159

φij = p(f̂i(x) = f̂j(x)|f̂i(x) 6= f(x) ∨ f̂j(x) 6= f(x))

.
The error correlation measures the diversity between the predictions of

two algorithms;

• High values of φ: low diversity, redundant classifiers: the same type of
errors;

• Low Values of φ: high diversity: different errors.

10.2 Linear Combination of Ensembles

The roots of online learning ensembles can be founded in the WinNow al-
gorithm (Littlestone, 1988). WinNow is a online algorithm that combines the
predictions of several experts by majority weighted voting. Each expert is as-
sociated with a weight. When the weighted vote misclassifies an example, the
weight of the experts in error is updated. WinNow uses a multiplicative weight-
update scheme, that is, the weight is multiplied by a constant β < 1. It is
restricted to binary decision problems, and exhibits a very good performance
when many dimensions are irrelevant.

Littlestone (1988), wrote:

A primary advantage of the WinNow algorithm is that the number
of mistakes grows only logarithmically with the number of irrele-
vant attributes in the examples. At the same time, the algorithm
is computationally efficient in both time and space.

Later on, the same author presented the Weighted-Majority Algorithm (Lit-
tlestone and Warmuth, 1994) to combine predictions from a set of base classi-
fiers. The main advantage of this algorithm is that we can bound the error of
the ensemble with respect to the best expert in the ensemble. The Weighted-
Majority Algorithm (WMA) (Algorithm 24) receives as input a set of predic-
tors and a sequence of examples. Predictors can be experts, learned models,
attributes, etc; the only thing that is required for the learning algorithm is
that it makes a prediction. Each predictor is associated with a weight, set to
1 in the initial phase.

The examples can be labeled or unlabeled. For each example in the se-
quence, the algorithm makes predictions by taking a weighted vote among the
pool of predictors. Each predictor classifies the example. The algorithm sums
the weight of the predictors that vote for the same class, and classifies the
example in the most weighted voted class. For the labeled examples, WMA

160 Knowledge Discovery from Data Streams

Algorithm 24: The Weighted-Majority Algorithm.

input: hi: Set of m learned models {h1, . . . , hm}
wi: Set of m weights
(x, y): Training example

begin
Initial Conditions: wi ← 1
foreach model hk ∈ h do

yi ← hk(x);

if
∑
i:y1=1 wi ≥

∑
i:y1=0 wi then

ŷ ← 1;

else
ŷ ← 0 ;

if y is known then
for i = 1 to m do

if yi 6= y then
wi ← wi ∗ β;

updates the weight associated to each predictor. This is the sequential learn-
ing step. The weight attached to wrong predictions is multiplied by a factor β
(for example 1/2). The vote of these predictors has less weight in the following
predictions.

The Weighted-Majority algorithm has an interesting property:

Theorem 10.2.1 Let D be any sequence of examples, A be a set of n predic-
tors, and k be the minimum number of mistakes made by any algorithm in A
for the set of examples in D. The number of mistakes made by the weighted-
majority algorithm using β = 1/2, is at most: 2.4× (k + log2(n)).

The sequence of values of the weight of any expert in WMA, as it was
defined here, always decreases. The weight cannot increase. This is a disad-
vantage in time-changing streams. A simple adaptation strategy in drifting
domains consists of normalizing the weights after each update.

The Weighted-Majority algorithm is quite simple with bounds on the en-
semble error. It might be applicable in the cases where the user has reason to
believe that one of some pool of known algorithms will perform well, but the
user does not know which one. The Weighted-Majority Algorithm was further
developed in Herbster and Warmuth (1995, 1998), and Cesa-Bianchi et al.
(1996).

Ensembles of Classifiers 161

Figure 10.2: Illustrative example of online Bagging.

10.3 Sampling from a Training Set

In this section we analyze methods that combine models generated by
a single algorithm. Diversity is one of the requirements when using multi-
ple models. Various strategies has been proposed for generation of different
classifiers using the same learning algorithm. Most of them manipulate the
training set to generate multiple hypotheses. In the training phase, the learn-
ing algorithm runs several times, each time using a different distribution of
the training examples. To classify query examples, all learned models classify
the example, and predictions are aggregated using some form of voting. This
technique works especially well for unstable learning algorithms - algorithms
whose output classifier undergoes major changes in response to small changes
in the training data.

10.3.1 Online Bagging

Bagging is one of the most effective methods for variance reduction. It was
introduced by Breiman (1996). The base idea consists of producing replications
of the training set by sampling with replacement. Each replication of the
training set has the same size as the original data. Some examples do not
appear in it while others may appear more than once. Such a training set is
called a bootstrap replicate of the original training set, and the technique is
called bootstrap aggregation (from which the term bagging is derived). For a
training set with m examples, the probability of an example being selected
is 1 − (1 − 1/m)m. For a large m, this is about 1 − 1/e. Each bootstrap

162 Knowledge Discovery from Data Streams

Algorithm 25: The Online Bagging Algorithm.

input: Lo: online base Learning Algorithm
h: Set of learned models {h1, . . . , hm}
(x,y): Latest training example to arrive

begin
foreach base model hm ∈ h do

Set k according to Poisson(1);
for i = 1 to k do

hm ← Lo(hm, (x, y));

replicate contains, on the average, 36.8% (1/e) of duplicated examples. From
each replication of the training set a classifier is generated. All classifiers are
used to classify each example in the test set, usually using a uniform vote
scheme.

Bagging seems to require that the entire training set be available at all
times because, for each base model, sampling with replacement is done by
performing random draws over the entire training set. Oza (2001) proposed a
method able to avoid this requirement. Each original training example may be
replicated zero, one, or more times in each bootstrap training set because the
sampling is done with replacement. Each base model is trained with k copies
of each of the original training examples where:

P (k) =
exp(−1)

k!
(10.1)

As each training example is available, and for each base model, we choose
k ∼ Poisson(1) and update the base model k times. Equation 10.1, comes
from the fact that as the number of examples tends to infinity, the binomial
distribution of k tends to a Poisson(1) distribution. This way, we remove the
dependence from the number of examples, and design a bagging algorithm for
open-ended data streams.

The algorithm is presented in Algorithm 25 and illustrated in Figure 10.2.
Unlabeled examples are classified in the same way as in bagging: uniform
voting over the M decision models. Online bagging provides a good approxi-
mation to batch bagging given that their sampling methods generate similar
distributions of bootstrap training sets.

10.3.2 Online Boosting

Schapire (1990) first proposed a general method to convert a weak learner
into one that achieves arbitrarily high accuracy. The algorithm originally de-
veloped was based on a theoretical model known as the weak learning model.
This model assumes that there exist weak learning algorithms than can do

Ensembles of Classifiers 163

Algorithm 26: The Online Boosting Algorithm.

input: Lo: online base Learning Algorithm
h: Set of models {h1, . . . , hM} learned so far
λc: vector (1...M) sum of weights of correct classified examples
λw: vector (1...M) sum of weights of incorrect classified examples
(x,y): Latest training example to arrive

begin
Set the example weight λ← 1;
foreach base model hm ∈ h do

Set k according to Poisson(λd) ;
for i ∈ {1, . . . , k} do

hm ← Lo(hm, (x, y));

if y = hm(x) then
λscm ← λscm + λ ;

εm ← λswm
λscm+λswm

;

λ← λ(1
2(1−εm)) ;

else
λswm ← λswm + λ ;

εm ← λswm
λscm+λswm

;

λ← λ(1
2εm

) ;

slightly better than random guessing regardless of the underlying probability
distribution D used in generating the examples. The work of Schapire shows
how to boost these weak learners to achieve arbitrarily high accuracy.

The main idea behind the boosting algorithm consists of maintaining a
weight for each example in the training set that reflects its importance. Ad-
justing the weights causes the learner to focus on different examples leading
to different classifiers. Boosting is an iterative algorithm. At each iteration the
weights are adjusted in accordance with the performance of the corresponding
classifier. The weight of the misclassified examples is increased. The final clas-
sifier aggregates the learned classifiers at each iteration by weighted voting.
The weight of each classifier is a function of its accuracy.

Oza (2001) proposes a online version for boosting. The main algorithm is
detailed in Algorithm 26 and illustrated in Figure 10.3. Assume a online weak
learner Lo. Online boosting receives as inputs: the current set of base models
{h1, . . . , hM}, and the associated parameters λc = {λc1, . . . , λcM} and λw =
{λw1 , . . . , λwM}, that are the sum of the weights of the correct and incorrectly
classified examples per each individual model, respectively. The output of the
algorithm is a new classification function that is composed of updated base
models h and associated parameters λw and λc.

164 Knowledge Discovery from Data Streams

Suppose a new example (~x, y) is available. The algorithm starts by assign-
ing the weight λ = 1 to the training example. Then the algorithm goes into a
loop through the base models. For the first iteration, k = Poisson(λ), and the
learning algorithm updates h1 k times using (~x, y). Now, if h1 correctly classi-
fies the example, increment λc1, and compute ε1 that is the weighted fraction
of examples correctly classified by h1. The weight of the example is multiplied
by 1/2(1− ε1). If h1 misclassify the example, increment λw1, compute ε1, and
multiply the weight by 1/2ε1. The process is repeated for all M models.

Figure 10.3: Illustrative example of online Boosting. The weight of the ex-
amples are represented by boxes, which height denotes the increase (decrease)
of the weight.

Polikar et al. (2001) presents Learn++ an algorithm, for incremental train-
ing ensembles of neural network classifiers. Learn++ is inspired by boosting, in
the sense that each classifier is trained on a strategically updated distribution
of the training data that focus on instances previously not seen or learned.
The proposed algorithm accommodates new data, including examples that
correspond to previously unseen classes. Furthermore, the algorithm does not
require access to previously used data during subsequent incremental learning
sessions.

10.4 Ensembles of Trees

10.4.1 Option Trees

Option decision trees were introduced by Buntine (1990) as a generalization

Ensembles of Classifiers 165

of decision trees. Option trees can include option nodes, which replace a single
decision by a set of decisions. An option node is like an or node in and-or
trees. Instead of selecting the ‘best’ attribute, all the promising attributes
are selected. For each selected attribute a decision tree is constructed. Note
that an option tree can have three types of nodes: Nodes with only one test
attribute - decision nodes; nodes with disjunctions of test attributes - option
nodes, and leaf nodes.

Classification of an instance x using an option tree is a recursive procedure:

• For a leaf node, return the class label predicted by the leaf.

• For a decision node the example follows the unique child that matches
the test outcome for instance x at the node.

• For an option node the instance follows all the subtrees linked to the
test attributes. The predictions of the disjunctive test are aggregated by
a voting schema.

Option trees is a deterministic algorithm known to be efficient as a variance
reduction method. The main disadvantage of option trees is that they require
much more memory and disk space than ordinary trees. Kohavi and Kunz
(1997) claim that it is possible to achieve significant reduction of the error
rates (in comparison with regular trees) using option trees restricted to two
levels of option nodes at the top of the tree.

In the context of streaming data, Kirkby (2008) first propose Option trees,
an extension to the VFDT algorithm, as a method to solve ties. After processing
a minimum number of examples, VFDT computes the merit of each attribute.
If the difference between the merits of the two best attributes satisfies the
Hoeffding bound, VFDT expands the decision tree by expanding the node and
generating new leaves. Otherwise, the two attributes are in a tie. VFDT reads
more examples and the process is repeated. Processing more examples implies
a decrease of ε (see Equation 2.1). Suppose that there are two equal discrim-
inative attributes. VFDT will require too many examples till ε becomes small
enough to choose one of them. The original VFDT uses a user defined constant
τ to solve ties. The node is expanded whenever ε < τ , (see Section 8.2). A
better solution is to generate an option node, containing tests in all the at-
tributes, such that the difference in merit with respect to the best attribute
is less than ε.

10.4.2 Forest of Trees

The Ultra Fast Forest of Trees (UFFT) (Gama and Medas, 2005) is an in-
cremental algorithm, that learns a forest of trees from data streams. Each tree
in UFFT is a Hoeffding tree, similar to VFDT, but designed for fast processing
continuous attributes. For continuous attributes, a splitting test has the form
attributei < valuej . UFFT uses the analytical method for split point selec-
tion presented by Loh and Shih (1997), and described in Section 8.3.1.2. For

166 Knowledge Discovery from Data Streams

a given attribute, UFFT uses univariate discriminant analysis to choose the
most promising valuej . The only sufficient statistics required are the mean
and variance per class of each numerical attribute. The process is described
in section 8.3.1.2. This is a major advantage over other approaches, like the
exhaustive method used in C4.5 (Quinlan, 1993) and in VFDTc (Gama et al.,
2003) (described in Section 8.3), because all the necessary statistics are com-
puted on the fly using reduced space. This is a desirable property on the treat-
ment of huge data streams because it guarantees constant time and memory
to process each example.

10.4.2.1 Generating Forest of Trees

The splitting criteria only apply to two class problems. Most of real-world
problems are multi-class. In the original paper (Loh and Shih, 1997) and for a
batch-learning scenario, this problem was solved using, at each decision node, a
2-means cluster algorithm to group the classes into two super-classes. UFFT use
another methodology based on round-robin classification (Fürnkranz, 2002).
The round-robin classification technique decomposes a multi-class problem
into k binary problems, that is, each pair of classes defines a two-classes prob-
lem. Fürnkranz (2002) shows the advantages of this method to solve n-class
problems. The UFFT algorithm builds a binary tree for each possible pair of
classes. For example, in a three class problem where the set of classes is the set
{A,B,C}, the algorithm grows a forest of binary trees, one tree for each pair:
{A,B}, {B,C}, and {A,C}. In the general case of n classes, the algorithm

grows a forest of n(n−1)
2 binary trees. When a new example is received during

the tree growing phase each tree will receive the example if the class attached
to it is one of the two classes in the tree label.

10.4.2.2 Classifying Test Examples

When doing classification of a test example, the algorithm sends the ex-
ample to all trees in the forest. Each tree in the forest makes a prediction,
that takes the form of a probability class distribution. Taking into account the
classes that each tree discriminates, these probabilities are aggregated using
the sum rule: for each class ci, sum the probabilities P (ci|~x) given by the
trees that consider ci. The class that maximize the sum is used to classify the
example.

10.5 Adapting to Drift using Ensembles of Classifiers

Ensembles of classifiers are a natural method to deal with time-changing
streams. The base assumption is that during change, data is generated from

Ensembles of Classifiers 167

a mixture distribution, which can be seen as a weighted combination of dis-
tributions characterizing the target concepts (Scholz and Klinkenberg, 2007).
This idea justifies multiple models approaches, where each based classifier has
an associated weight that reflects its performance in the most recent data.

The SEA algorithm (Street and Kim, 2001) is one of the first approaches to
address the problem of concept drift in learning ensembles of classifiers from
data streams. The method builds separate classifiers from sequential batches
of training examples. These classifiers are combined into a fixed-size ensemble
using a heuristic replacement strategy.

In a similar way, Wang, Fan, Yu, and Han (2003) propose a general frame-
work for mining concept-drifting data streams using weighted ensemble clas-
sifiers. They train an ensemble of classification models, such as C4.5, RIPPER,
naive Bayes, etc., from sequential batches of the data stream. The classifiers
in the ensemble are judiciously weighted based on their expected classification
accuracy on the test data under the time-evolving environment. Thus, the en-
semble approach improves both the efficiency in learning the model and the
accuracy in performing classification.

Assume a training set D, and a classifierM. Let Mc(x) be the probability
that example x belongs to class c given by M. The mean square error of a
classifier can be expressed by:

MSE =
1

|D|
∑
x∈D

(1−Mc(x))2

The weight of classifier M should be reversely proportional to its MSE. The
weight of a classifier is the advantage of using that model in comparison to a
random classifier. The MSE of a random classifier is:

MSEr =
∑
c

p(c)× (1− p(c))2

where p(c) is the probability of observing class c. The weight wi of a classifier
is given by: wi = MSEr −MSEi.

Kolter and Maloof (2003, 2007) present the Dynamic Weighted Majority
algorithm, an ensemble method for tracking concept drift. This is a general
method based on the Weighted Majority algorithm (Littlestone, 1988) and can
be used with any on-line learner in time-changing problems with unknown dy-
namics. The Dynamic Weighted Majority (DWM) maintains an ensemble of pre-
dictive models, referred to as experts, each with an associated weight. Experts
can be generated by the same base learning algorithm, but are generated at
different time steps so they use different training set of examples. DWM makes
predictions using a weighted-majority vote of these experts. It dynamically
creates and deletes experts in response to changes in performance. Whenever
an example is available, each expert is consulted, making a prediction. The
final prediction is obtained as a weighted vote of all the experts. For each
class, DWM sums the weights of all the experts predicting that class, and pre-
dicts the class with greatest weight. The learning element of DWM, first predicts

168 Knowledge Discovery from Data Streams

the classification of the training example. The weights of all the experts that
misclassified the example are decreased by a multiplicative constant β. If the
overall prediction was incorrect, a new expert is added to the ensemble with
weight equal to the total weight of the ensemble. Finally, all the experts are
trained on the example.

Algorithm 27: The Add Expert algorithm for discrete classes.

input: x, yT A Training Set with class y ∈ Y
β ∈ [0, 1]: factor for decreasing weights
τ ∈ [0, 1]: loss required to add a new expert

begin
Set the initial number of experts: N1 ←− 1;
Set the initial expert weight: w1,1 ←− 1;
for t← 1 to T do

Get expert predictions: εt,1, . . . , εt,Nt ∈ Y ;

Compute prediction: ŷt = argmaxc∈Y
∑Nt
i=1 wt,i[c = εt,i];

Update experts weights: wt+1,i ←− wt,iβ[yt=εt,i];
if ŷt 6= yt then

Add a New Expert;
Nt+1 ←− Nt + 1;

wt+1,Nt+1
←− γ

∑Nt
i=1 wt,i;

Train each expert on example xt, yt;

If trained on a large amount of data, DWM has the potential to create a
large amount of experts. Ideally, we should be able to remove, and prune old-
est experts while keeping the best experts. Doing this, the accuracy will not
decrease. A possible pruning rule removes the oldest expert when the number
of experts is greater than a constant k. Other pruning rules might be used. For
example, when a new expert is added to the ensemble, if the number of experts
is greater than a constant K, remove the expert with the lowest weight before
adding the new member. Afterward, the same authors present AddExp algo-
rithm (Kolter and Maloof, 2005) a variant of DWM extended for classification
(Algorithm 27) and regression (Algorithm 28). A similar approach, but using
a weight schema similar to boosting and explicit change detection appears
in Chu and Zaniolo (2004).

Ensembles of Classifiers 169

Algorithm 28: The Add Expert algorithm for continuous classes.

input: x, yT A Training Set with class y ∈ [0 : 1]
β ∈ [0, 1]: factor for decreasing weights
γ ∈ [0, 1]: factor for new expert weight
τ ∈ [0, 1]: loss required to add a new expert

begin
Set the initial number of experts: N1 ←− 1;
Set the initial expert weight: w1,1 ←− 1;
for t← 1 to T do

Get expert predictions: εt,1, . . . , εt,Nt ∈ [0, 1];

Compute prediction: ŷt =
∑Nt
i=1 wt,iεt,i∑Nt
i=1 wt,i

;

Suffer loss ‖ŷt − yt‖;
Update experts weights: wt+1,i ←− wt,iβ‖εt,i−yt‖;
if ‖ŷt − yt‖ ≥ τ then

Add a New Expert;
Nt+1 ←− Nt + 1;

wt+1,Nt+1 ←− γ
∑Nt
i=1 wt,i‖εt,i − yt‖;

Train each expert on example xt, yt;

10.6 Mining Skewed Data Streams with Ensembles

Skewed distributions appear in many data stream applications. In these
cases, the positive examples are much less popular than the negative ones.
Also, misclassifying a positive example usually invokes a much higher loss
compared to that of misclassifying a negative example. Network intrusion and
fraud detection are examples of such applications. Assume the incoming data
stream arrives in sequential chunks, S1, S2, . . . , Sm. Sm is the most up-to-
date chunk. Moreover, assume that the data comes from two classes, positive
and negative classes, and the number of examples in negative class is much
greater than the number of positive examples. In other words, P (+)� P (−).
The data chunk that arrives next is Sm+1. Our goal is to train a classifier
based on the data arrived so far to classify the examples in Sm+1. We could
learn a decision using the most recent data chunk. This works for examples in
negative class since these examples dominate the data chunk and are sufficient
for training an accurate model. However, the positive examples are far from
sufficient. Most inductive learners built on one chunk will perform poorly on
positive class.

Gao, Fan, Han, and Yu (2007) split each chunk Si into two parts Pi, which
contains positive examples in Si, and Ni, which contains negative examples

170 Knowledge Discovery from Data Streams

Algorithm 29: The Skewed Ensemble Algorithm.

input: Sm: current data chunk; Sm+1: Test data;
AP : set of positive examples seen so far; k: number of models in

the ensemble
begin

Split Sm into Pm and Nm;
AP = {AP ∪ Pm};
for i = 1 to k do

S = Sample |AP | examples from Nm;
Ci = Train Classifier using {S ∪AP}

Classify Sm+1 using the Ensemble C =
⋃k
i=1 Ci;

in Si. The size of Pi is much smaller than that of Ni. To enhance the set
of positive examples, the authors propose to collect all positive examples and
keep them in the training set. Specifically, the positive examples in the training
set are {P1, P2, . . . , Pm}. The negative examples are randomly under sample
from the last data chunk Nm to make the class distribution balanced. The
sampling procedure is repeat k times (see Algorithm 29). Though the strategy
is quite simple, it is effective in skewed classification.

10.7 Notes

The study of voting systems, as a subfield of political science, economics
or mathematics, began formally in the 18th century and many proposals have
been made. The seminal forecasting paper by Granger and Newbold (1976)
stimulated a flurry of articles in the economics literature of the 1970s about
combining predictions from different forecasting models. Hansen and Sala-
mon (1990) showed the variance reduction property of an ensemble system.
Bayesian model averaging has been pointed out as an optimal method (Hoet-
ing et al., 1999) for combining classifiers. It provides a coherent mechanism for
accounting model uncertainty. Schapire (1990) work put the ensemble systems
at the center of machine learning research, as he proved that a strong classifier
in probably approximately correct sense can be generated by combining weak
classifiers through a boosting procedure. Lee and Clyde (2004) introduce an
on-line Bayesian version of bagging. Fern and Givan (2000) show empirical
results for both boosting and bagging-style on-line ensemble of decision trees
in a branch prediction domain. In addition, they show that, given tight space
constraints, ensembles of depth-bounded trees are often better than single
deeper trees. Ensembles of semi-random decision trees for data streams ap-

Ensembles of Classifiers 171

pear in (Hu et al., 2007). In a similar line, Abdulsalam et al. (2007) present
the Streaming Random Forests algorithm, an online and incremental stream
classification algorithm that extends the Random Forests algorithm (Breiman,
2001) to streaming setting.

172 Knowledge Discovery from Data Streams

Chapter 11

Time Series Data Streams

Time series are sequences of measurements that follow non-random orders.
The analysis of time series is based on the assumption that successive values
of a random variable represent consecutive measurements taken at spaced time
intervals. A common notation specifies a time series X indexed by the natural
numbers:

x1, x2, . . . , xt−1, xt,

Time Series Analysis refers to applying different data analysis techniques
to model dependencies in the sequence of measurements. The focus of classical
time series analysis was on forecasting and pattern identification. Data analy-
sis techniques recently applied to time series include clustering, classification,
indexing, and association rules. In this chapter we review techniques able to
deal with high-speed time series.

11.1 Introduction to Time series Analysis

Most time series patterns can be described in terms of two basic classes of
components: trend and seasonality. The former represents a general systematic
linear or (most often) nonlinear component that changes over time; the latter
repeats itself in systematic intervals over time. Figure 11.1 plots the time series
of the electricity load demand in Portugal. It clearly shows seasonal patterns:
week patterns, working days, and week-ends.

11.1.1 Trend

A moving average is commonly used in time series data to smooth out
short-term fluctuations and highlight longer-term trends or cycles. These smooth-
ing techniques reveal more clearly the underlying trend, seasonal and cyclic
components of a time-series.

We can distinguish averaging methods where all data points have the same
relevance and weighted averaging methods where data points are associated
with a weight that strengths their relevance. Relevant statistics in the first
group are:

173

174 Knowledge Discovery from Data Streams

Figure 11.1: Plot of the electricity load demand in Portugal in January 2008.
The time-series exhibit seasonality: it clear shows week patterns, working days,
and week-ends.

• Moving Average
The mean of the previous n data points:

MAt = MAt−1 −
xt−n+1

n
+
xt+1

n

• Cumulative moving average
the average of all of the data up until the current data point

CAt = CAt−1 +
xt − CAt−1

t

The second group, weighted moving averages, includes:

• Weighted moving average
has multiplying factors to give different weights to different data points.
The most recent data points are more “important”:

WMAt =
nxt + (n− 1)xt−1 + · · ·+ 2xt−n+2 + xt−n+1

n+ (n− 1) + · · ·+ 2 + 1

• Exponential moving average
The weighting for each older data point decreases exponentially, giving
more importance to recent observations while still not discarding older
observations entirely.

EMAt = α× xt + (1− α)× EMAt−1

Time Series Data Streams 175

The idea behind the exponential moving average is to produce an estimate
that gives more weight to recent measurements, on the assumption that recent
measurements are more likely to be relevant. It does not require maintaining in
memory all the points inside the window. Nevertheless, choosing an adequate
α is a difficult problem, and it is not trivial.

11.1.2 Seasonality

Autocorrelation and autocovariance are useful statistics to detect periodic
signals. Since autocovariance depend on the units of the measurements and is
unbounded, it is more convenient to consider autocorrelation that is indepen-
dent of the units of the measurements, and is in the interval [−1; 1].

Autocorrelation is the cross-correlation of a time-series with itself. It is
used as a tool for finding repeating patterns, such as the presence of a periodic
signal. Autocorrelation is measured as the correlation between x and x + l
where l represents the time lag, and can be computed using Equation 11.1.

r(x, l) =

∑n−l
i=1 (xi − x̄)(xi+l − x̄)∑n

i=1(xi − x̄)2
(11.1)

Figure 11.2 plots the autocorrelation of the time-series presented in Fig-
ure 11.1, varying the time-lag in the interval [1 hour, 2 weeks]. The plot, de-
noted as correlogram, shows high values for time lag of 1 hour, and multiples
of 24 hours. Time-lags of one week (168 hours) are even more autocorrelated
in the electrical demand data.

11.1.3 Stationarity

We should point out, that a common assumption in many time series tech-
niques is that the data are stationary. A stationary process has the property
that the mean, variance and autocorrelation structure do not change over
time.

A usual strategy to transform a given time-series to a stationary one con-
sists of differentiating the data. That is, given the series zt, we create the new
series yi = zi−zi−1. Nevertheless, information about change points is of great
importance for any analysis task.

11.2 Time-series Prediction

Time-series analysis exploits dependences between time-points. A simple
way to model dependence over time is with the autoregressive models. The

176 Knowledge Discovery from Data Streams

Figure 11.2: A study on the autocorrelation for the electricity load demand
in Portugal. In the plot, the x-axis represents the x time horizon [1 hour, 2
weeks], while the y-axis presents the autocorrelation between current time t
and time t−l. The plot shows high values for time lags of 1 hour, and multiples
of 24 hours. Weekly horizons (168 hours) are even more autocorrelated in the
electrical network.

simplest autoregressive model of order 1 is:

AR(1) : zt = β0 + β1 × zt−1 + εt

The simplest method to learn the parameters of the AR(1) model is regress
Z on lagged Z. If the model successfully captures the dependence structure
in the data then the residuals should look iid. There should be no dependence
in the residuals.

The case of β1 = 1 deserves special attention because of it is relevant
in economic data series. Many economic and business time series display a
random walk characteristic. A random walk is an AR(1) model with β1 = 1
is:

AR(1) : zt = β0 + zt−1 + εt

A random walker is someone who has an equal chance of taking a step forward
or a step backward. The size of the steps is random as well. In statistics (Dillon
and Goldstein, 1984) much more sophisticated techniques are used. Most of
them are out of the scope of this book.

11.2.1 The Kalman Filter

The Kalman filter (Kalman, 1960) is a recursive filter that estimates the
state of a dynamic system from a series of noisy measurements. It is used in

Time Series Data Streams 177

problems where we want to estimate the state x ∈ <n of a dynamic system
described by a linear stochastic equation:

xk = Axk−1 + wk−1 (11.2)

The state of the system is unobservable. Nevertheless we have access to ob-
servable noisy measurements z ∈ <m assumed to be:

zk = Hxk + vk (11.3)

The variables wk and vk represent the process and the measurement noises
respectively. It is assumed that both are independent normally distributed
centered in 0 and with covariance matrices given by Q and R, respectively.
The matrix A in equation 11.2 relates the state of the system in time k − 1,
with the current state at time k; H in equation 11.3 relates the current state
of the system with the measurement. At a given timestep t, the filter uses the
state estimate from the previous timestep to produce an estimate of the state
at the current timestep: x̂−t . This predicted state estimate is also known as
the a priori state estimate because it does not include observation information
from the current timestep. Later, whenever zt is observed, the current a priori
prediction is combined with current observation information to refine the state
estimate. This improved estimate, x̂t, is termed the a posteriori state estimate.

We have two error estimates. The a priori error, e−k ≡ xk − x̂
−
k , and the a

posteriori error, êk ≡ xk − x̂k.
The covariance matrix of the a priori error estimate is:

P−k = E
[
e−k e

−
k

T
]

(11.4)

and the covariance matrix of the a posteriori error estimate is:

Pk = E
[
êkê

T
k

]
(11.5)

The Kalman filter computes x̂k as a linear combination of x̂−k and the differ-
ence between zk and Hx̂−k :

x̂k = x̂−k +Kk

(
zk −Hx̂−k

)
(11.6)

The difference
(
zk −Hx̂−k

)
is the innovation measure or residual, and reflects

the difference between predict measurement Hx̂−k , and the observed value zk.
The matrix K, from the equation 11.6 is called the factor gain and minimize
the covariance matrix of the a posteriori error (Kalman, 1960; Harvey, 1990).
K is given by:

Kk =
P−k H

T

HP−k H
T +R

(11.7)

Whenever the covariance matrix R is near 0, the gain factor K gives more
weight to the residual. Whenever the covariance matrix P is near 0, the gain
factor K gives less weight to the residual.

178 Knowledge Discovery from Data Streams

Figure 11.3: Kalman filter as a hidden Markov model.

The Kalman filter estimates the state of the system using a set of recursive
equations. These equations are divided into two groups: time update equations
and measurement update equations. The time update equations are respon-
sible for projecting forward (in time) the current state and error covariance
estimates to obtain the a priori estimates for the next time step.

x̂−k = Ax̂k−1 (11.8)

P−k = APk−1A
T +Q (11.9)

The measurement update equations are responsible for the feedback, i.e.
for incorporating a new measurement into the a priori estimate to obtain an
improved a posteriori estimate.

Kk =
P−k H

T

HP−k H
T +R

(11.10)

x̂k = x̂−k +Kk

(
zk −Hx̂−k

)
(11.11)

Pk = (I −KkH)P−k (11.12)

The true state is assumed to be an unobserved Markov process (see Fig-
ure 11.3), and the measurements are the observed states of a hidden Markov
model. The Markov assumption, justifies that the true state is conditionally
independent of all earlier states given the immediately previous state.

Equations 11.8 and 11.9 forecast the current system state, x̂k−1, and the
error covariance matrix, Pk−1, for the next time-stamp k. We obtain the a
priori estimates of the system state, x̂−k and the error covariance matrix P−k .
Equations 11.11 and 11.12 incorporate the measurements, zk, in the estimates

Time Series Data Streams 179

a priori, producing the estimates a posteriori of the system state, x̂k, and the
error covariance matrix, Pk. After computing the a posteriori estimates, all the
process is repeated using the a posteriori estimates to compute new estimates
a priori. This recursive nature is one of the main advantages of the Kalman
filter. It allows easy, fast and computational efficient implementations (Harvey,
1990).

The performance of the Kalman filter depends on the accuracy of the a-
priori assumptions:

• Linearity of the difference stochastic equation;

• Estimation of covariances Q and R, assumed to be fixed, known, and
follow normal distributions with zero mean.

A clever choice of the parameters is of great importance for a good performance
of the filter. Greater values of Q imply that the filter will fast response to state
changes, at costs of low precision (large variance of P). On the other side, lower
values of Q will improve predictions in stationary phases, at costs of slower
adaption to changes. Maintaining constant Q and R the covariance matrix,
Pk, and the Kalman filter gain, Kk, will converge fast.

11.2.2 Least Mean Squares

One of the most popular adaptive algorithms used today is the Least Mean
Squares (LMS) algorithm. Essentially, this algorithm attempts to minimize
the error that occurs between the observed signal and the estimated value
of the signal, ŷ. This estimated signal is a linear combination of the inputs:
ŷ = w0 +

∑
wi × xi.

Once the signal and its approximation are found, the error is just the
difference between the two at the current point in time: e = y − ŷ.

Using the error, we can approximate the next set of weights using the delta
rule:

∆i = (y − ŷ)× xi
wi = wi−1 + µ×∆i

where wi−1 is the weight i at previous timestamp, and µ, the learning rate, is
a constant.

The main idea behind the least mean squares, or delta rule, is to use
gradient descent to search the hypothesis space of possible weight vectors to
find the weights that best fit the training examples.

11.2.3 Neural Nets and Data Streams

Neural networks (Bishop, 1995) are a general function approximation method.
They are widely used in pattern recognition and machine learning in problems

180 Knowledge Discovery from Data Streams

that are described by continuous attributes. One interesting property is that
a three layer artificial neural network, using for example sigmoides as activa-
tion functions, can approximate any continuous function with arbitrary small
precision (Mitchell, 1997).

A multi-layer neural network is a directed acyclic graph, where nodes or
neurons are organized in layers. Each neuron in one layer is connected with all
neurons in the next layer. Associated with each connection there is a weight
that strengths the connection, such that the output signal of neuron is multi-
plied by the weight before input to the following neuron.

The most common algorithm to train a neural network is the backpropaga-
tion algorithm. This is a stochastic steepest gradient descent. It uses several
iterations over the training data, and update weights after processing each
example or after each iteration. The process ends when a heuristic stop cri-
teria holds or after a user-defined number of epochs. The process used to be
offline and the generated model static. The main motivation for this training
method is the reduced number of examples with respect to its representation
capacity, which may lead to overfit the data. The only reason for multiple
scans of training data is lack of data – small training sets.

In a seminal book, Bishop (1995, page 304) wrote:

However, if the generator of the data itself evolves with time, then
this [static] approach is inappropriate and it becomes necessary for
the network model to adapt to the data continuously so that ’track’
the time variation. This requires on-line learning techniques, and
raises a number of important issues, many of which are at present
largely unresolved and lie beyond the scope of this book.

The streaming setting, mainly due to the abundance of data, is an advantage
that can full exploit the potentialities of neural network based algorithms.
Craven and Shavlik (1997) argue that the inductive bias of neural networks is
the most appropriate for sequential and temporal prediction tasks.

11.2.3.1 Stochastic Sequential Learning of Neural Networks

A natural and intuitive approach, consists of propagating each training
example and backpropagate the error through the network only once, as data
is abundant and continuously flow. The stochastic sequential learning of the
MLP is as follows. At each moment t, the system receives an example 〈~xt, yt〉
and executes two actions. The first consists of propagating ~xt through the
network, and computing the output of the network ŷt. ŷt is compared with
the observed value yt, and the error is backpropagated while updating the
weights. The example can be discarded, and the process continues with the
next example.

The main advantage of the stochastic sequential learning method used
to train the neural network is the ability to process an infinite number of
examples at high speed. Both operations of propagating the example and

Time Series Data Streams 181

backpropagating the error through the network are very efficient and can
follow high-speed data streams. This training procedure is robust to overfit-
ting, because each example is propagated through the network and the error
backpropagated only once. Another advantage is the smooth adaptation in
dynamic data streams where the target function gradually evolves over time.

11.2.3.2 Illustrative Example: Load Forecast in Data Streams

Consider the illustrative example described in Section 1.2, where sensors
distributed all around electrical-power distribution networks produce streams
of data at high-speed. The goal of the system we briefly describe in the follow-
ing sections 1 is to continuously maintain a predictive model, in each sensor,
for three time horizons: next hour, one day ahead, and one week ahead. Re-
member that at time t our predictive model made a prediction ŷt+k, for the
time t+ k, where k is the desired horizon forecast. Later on, at time t+ k the
sensor measures the quantity of interest yt+k, and we can then estimate the
loss of our prediction L(ŷt+k, yt+k).

Each sensor is equipped with a feed-forward neural network. The networks
may have different topologies for each sensor and are trained with different in-
puts depending on the horizon forecast. The topology of the neural networks
use 10 inputs, 4 hidden neurons (tanh-activated) and a linear output. As
usual (Khotanzad et al., 1997), besides the historical values, we consider also
4 cyclic variables, for hourly and weekly periods (sin and cos). The choice of
the networks topology and inputs was mainly motivated by experts suggestion,
autocorrelation analysis and previous work with batch approaches (Hippert
et al., 2001). One implication of the chosen inputs is that we no longer main-
tain the property of processing each observation once. The training of neural
networks requires the use of some historical values of each variable to predict.
Thus, we introduce a buffer (window with the most recent values) strategy.
The size of the buffer depends on the horizon forecast and data granularity
and is at most two weeks. Figure 11.4 presents a general description of the
procedure executed at each new example.
Overfitting and Variance Reduction. The flexibility of the representa-
tional power of neural networks implies error variance. In stationary data
streams the variance shrinks when the number of examples go to infinity. In
dynamic environments where the target function smoothly change and even
abrupt changes can occur, the variance of predictions is problematic. An ef-
ficient variance reduction method is the dual perturb and combine (Geurts,
2001) approach. It consists on perturbing each test example several times,
adding white noise to the attribute-values, and predicting each perturbed
version of the test example. The final prediction is obtained by aggregating
(usually by averaging) the different predictions. The method is directly ap-
plicable in the stream setting because multiple predictions only involve test
examples, which is an advantage over other variance reduction methods like

1Gama and Rodrigues (2007) presents a detailed description of the system.

182 Knowledge Discovery from Data Streams

Figure 11.4: Buffered on-line Predictions: 1. new real data arrives (r) at
time stamp i, substituting previously made prediction (o); 2. define the input
vector to predict time stamp i; 3. execute prediction (t) for time stamp i; 4.
compute error using predicted (t) and real (r) values; 5. back-propagate the
error one single time; 6. define input vector to predict time stamp i plus the
requested horizon; 7. execute prediction of the horizon (p); 8. discard oldest
real data (d).

baggingBreiman (1996). We can use the dual perturb and combine method
with three goals: as a method to reduce the variance exhibited by neural net-
works; as a method to estimate a confidence for predictions (users seem more
comfortable with both a prediction and a confidence estimate on the predic-
tion), which is very relevant point in industrial applications; and as a robust
prevention of the uncertainty in information provided by sensors in noisy en-
vironments. For example, if a sensor reads 100, most of times the real-value is
around 100: it could be 99 or 101. Perturbing the test example and aggregat-
ing predictions also reduce the uncertainty associated with the measurement
sent by the sensor.

Improving Predictive Accuracy using Kalman Filters. Our target func-
tion is a continuous and derivable function over time. For these type of time
series, one simple prediction strategy, reported elsewhere to work well, con-
sists of predicting for time t the value observed at time t − k. A study on
the autocorrelation (Figure 11.2) in the time series used to train the neural
network reveals that for next hour forecasts, k = 1 is the most autocorre-
lated value, while for next day and next week the most autocorrelated one is
the corresponding value one week before (k = 168). This very simple predic-
tive strategy is used as a default rule and as a baseline for comparisons. Any
predictive model should improve over this naive estimation.

We use this characteristic of the time series to improve neural nets fore-

Time Series Data Streams 183

casts, by coupling both using a Kalman filter (Kalman, 1960). The Kalman
filter is widely used in engineering for two main purposes: for combining mea-
surements of the same variables but from different sensors, and for combin-
ing an inexact forecast of system’s state with an inexact measurement of
the state. We use Kalman filter to combine the neural network forecast with
the observed value at time t − k, where k depends on the horizon forecast
as defined above. The one dimensional Kalman filters works by considering:

ŷi = ŷi−1 +K(yi − ŷi−1) where σ2
i = (1−K)σ2

i−1 and K =
σ2
i−1

σ2
i−1+σ2

r
.

11.3 Similarity between Time-series

Most of time-series analysis techniques (clustering, classification, novelty
detection, etc) require similarity matching between time-series. Similarity is
used to solve problems like: Given a query time series Q and a similarity
measure D(Q,S) find the most similar time series in a time-series database
D. This is usually known as Indexing or Query by Content

Similarity measures the degree of resemblance between two or more con-
cepts or objects. Similarity measures over time series data represent the main
step in time series analysis. A common measure for similarity consists of mea-
surement some form of distance between the time-series. Two usual distances
are: The Euclidean distance and dynamic time warping. They are dis-
cussed in the next sections.

11.3.1 Euclidean Distance

The Euclidean distance between two time series is the square-root of sum
of the squared distances from each nth point in one time series to the nth point
in the other. Given two time series, Q = q1, q2, . . . , qn and C = c1, c2, . . . , cn,
the Euclidean distance between them is defined as:

D(Q,C) =

√√√√ n∑
i=1

(qi − ci)2.

Geometrically, the Euclidean distance corresponds to the area delimited
by the two time-series (see Figure 11.5). The Euclidean distance satisfies the
4 properties of a distance:

1. identity: D(Q,Q) = 0;

2. is always non negative: D(Q,C) ≥ 0;

3. is symmetric: D(Q,C) = D(C,Q);

184 Knowledge Discovery from Data Streams

Figure 11.5: Euclidean Distance between time-series Q and C.

time-stamp 1 2 3 4 5 6 7 8 9 10 11 12
Query 1.0 0.8 0.8 1.4 1.2 1.0 1.5 1.9 1.5 1.5 1.5 1.6
Reference 0.9 0.8 0.8 1.3 1.4 1.2 1.7 1.8 1.6 1.5 1.5 2.0

time-stamp 13 14 15 16 17 18 19
Query 1.8 2.8 2.5
Reference 2.5 2.7 2.9 2.5 3.1 2.4 2.9

Table 11.1: The two time-series used in the example of dynamic time-
warping.

4. satisfies the triangular inequality: D(Q,C) +D(C, T) ≥ D(Q,T).

The two time-series must have the same number of elements. It is quite
efficient as a distance, but not as a measure of similarity. For example, consider
two identical time-series, one slightly shifted along the time axis. Euclidean
distance will consider them to be very different from each other.

11.3.2 Dynamic Time-Warping

The dynamic time warping (DTW) algorithm finds the optimal alignment
between two time series. It is often used to measure time series similarity,
classification, and to find corresponding regions between two time series.

Dynamic time warping (DTW) is an algorithm for measuring similarity
between two sequences which may vary in time or speed. DTW is a method
to find an optimal match between two given sequences (e.g. time series) with
certain restrictions. DTW is optimal in the sense that minimizes the Euclidean
distance between the two time series. The optimization process is performed
using dynamic programming. The problem for one-dimensional time series can
be solved in polynomial time.

Problem Formulation. The warp path must start at the beginning of each
time series at w1 = (1, 1) and finish at the end of both time series at wK =
(n, p). This ensures that every index of both time series is used in the warp
path. Another constraint on the warp path forces i and j to be monotonically
increasing in the warp path.

Time Series Data Streams 185

Figure 11.6: The two times-series. In the right panel plots the reference
time-series, the middle panel plot the query time-series, and the left panel
plot both.

Between all possible warp paths, we are interested in the minimum-distance
warp path. The distance of a warp path W is:

Dist(W) =

k=K∑
k=1

dist(wki, wkj)

where dist(wki, wkj) is the Euclidean distance between the two data point
indexes (one from X and one from Y) in the kth element of the warp path.

Formally, the dynamic time warping problem is stated as follows:

• Given two time series X = x1, x2, . . . , xn, and Y = y1, y2, . . . , yp, of
lengths n and p

• construct a warp path W = w1, w2, . . . , wK

• where K is the length of the warp path and

– max(n, p) ≤ K < n+ p

– the kth element of the warp path is wk = (i, j) where

∗ i is an index from time-series X,

∗ j is an index from time-series Y .

Vertical sections of the warp path, means that a single point in time series
X is warped to multiple points in time series Y . Horizontal sections means
that a single point in Y is warped to multiple points in X. Since a single point
may map to multiple points in the other time series, the time series do not
need to be of equal length. If X and Y were identical time-series, the warp
path through the matrix would be a straight diagonal line.

To find the minimum-distance warp path, every cell of a cost matrix (of
size n × p) must be filled. The value of a cell in the cost matrix is: D(i, j) =
Dist(i, j) +min[D(i− 1, j), D(i, j − 1), D(i− 1, j − 1)]. In practice very good

186 Knowledge Discovery from Data Streams

Figure 11.7: Alignment between the two time series. The reference time-
series was pushed-up for legibility. The path between the two time series is
W={(1,1), (2,2), (3,2), (3,3), (4,4), (5,4), (6,5), (6,6), (7,7), (8,8), (9,9), (10,9),
(11,9), (11,10), (11,11), (11,12), (12,13), (13,14), (14,14), (15,14), (16,15),
(17,15), (18,15), (19,15)}.

approximations are obtained by limiting the search of neighbor points to a
bandwidth. This restriction accelerates all the process and makes it applicable
in the streaming setting. Salvador and Chan (2007), among others, resent fast
and accurate methods to compute the time warping distance in linear time
and space.

11.4 Symbolic Approximation – SAX

Lin, Keogh, Lonardi, and Chiu (2003) presents the Symbolic Approxima-
tion – SAX of time-series, allowing a time series with a length n to be trans-
formed into a string with an arbitrarily length. The process is linear in time,
making it attractive for stream processing. SAX changes the numeric represen-
tation of a time-series to a string that is a sequence of symbols.

11.4.1 The SAX Transform

SAX is generic transform and could be applied to any time series analysis
technique. It takes linear time, so is a fast symbolic approximation of time
series. The SAX transform consists of the three following main steps:

• Piecewise Aggregate Approximation (PAA);

Time Series Data Streams 187

• Symbolic Discretization;

• Distance Measure.

11.4.1.1 Piecewise Aggregate Approximation (PAA)

The first step consists of a dimensionality reduction approximation of the
original time-series. A time series with size n is approximated using PAA to a
time series with size w using the following equation:

c̄i =
w

n

w
n i∑

j=w
n (i−1)+1

cj

Where c̄i is the ith element in the approximated time series. w is a user
defined parameter and represent the number of episodes (intervals) of the
transformed time-series. If we plot a time-series in a Cartesian space, the
piecewise aggregate approximation divides the x axis into a set of intervals of
the same size.

11.4.1.2 Symbolic Discretization

The second step of SAX, transforms the output of PAA into a string of sym-
bols. It is the symbolic discretization phase. It requires another user defined
parameter that is the cardinality of the alphabet of symbols. The objective is
a mapping from number to symbols, such that all symbols occur with equal
probability. In the Cartesian space representation, the symbolic discretization
step divides the y axis into intervals. The number of intervals is given by the
alphabet of symbols.

Leonardi et al. (2007) observe that normalized time-series have a Gaussian
distribution. Under that assumption, we can determine the breakpoints that
will produce equal-size areas, from one point to another, under the Gaussian
curve. Breakpoints are a sorted list of numbers β = β1, . . . , βα−1 that the area
under a N(0, 1) Gaussian curve from βi to βi+1 is 1/α. β0 is defined as −∞
and βα as +∞. These breakpoints are determined by looking in a statistical
table. For example, Table 11.2 gives the breakpoints for values of α between
3 and 10.

According to the output of piecewise aggregate approximation, the coding
schema is: If a point is less than the smallest breakpoint, then it is denoted
as a. Otherwise and if the point is greater than the smallest breakpoint and
less than the next larger one, then it is denoted as b, etc.

11.4.1.3 Distance Measure

The output of the second step in SAX is a string. How can we work with
the string? How can we define a sound metric to work with strings?

188 Knowledge Discovery from Data Streams

a 3 4 5 6 7 8 9 10
β1 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28
β2 0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84
β3 0.67 0.25 0 -0.18 -0.32 -0.43 -0.52
β4 0.84 0.43 0.18 0 -0.14 -0.25
β5 0.97 0.57 0.32 0.14 0
β6 1.07 0.67 0.43 0.25
β7 1.15 0.76 0.52
β8 1.22 0.84
β9 1.28

Table 11.2: A lookup table that contains the breakpoints that divide a Gaus-
sian distribution in an arbitrary number (from 3 to 10) of equiprobable regions

Figure 11.8: The main steps in SAX. a) Piecewise Aggregate Approximation;
b) Symbolic Discretization; c) The output SAX string.

The following distance measure is applied when comparing two different
SAX strings:

MINDIST (Q̂, Ĉ) =

√√√√w

n

w∑
1

dist(q̂i, ĉi)2

where dist(q, c) can be determined using a lookup table (Lin et al., 2003).
A relevant property of MINDIST is that it lower bounding the Euclidean
distance, that is, for all Q and S, we have MINDIST (Q̂, Ŝ) ≤ D(Q,S).

11.4.1.4 Discussion

SAX provides a symbolic representation for time-series data. Three impor-
tant properties of SAX are:

• Lower bounding of Euclidean distance;

• Dimensionality and numerosity reduction;

• Compact representation.

Using strings to represent time-series are powerful representations, allow-
ing the use of tools that are difficult or impossible with other representa-
tions. SAX has been used for different purposes: Finding motifs in time se-
ries (Keogh, Lonardi, and Chiu, 2002; Lin, Keogh, Lonardi, and Chiu, 2003);

Time Series Data Streams 189

Visualizing massive time series (Lin, Keogh, and Lonardi, 2004; Lin, Keogh,
Lonardi, Lankford, and Nystrom, 2004); Clustering from streams (Keogh, Lin,
and Truppel, 2003); Kolmogorov complexity analysis in data mining (Lin,
Keogh, and Lonardi, 2004); and Finding discords in time series (Keogh, Lin,
and Fu, 2005).

11.4.2 Finding Motifs using SAX

Patel, Keogh, Lin, and Lonardi (2002) discuss the problem of identification
of previously unknown, frequently occurring patterns in time-series. They call
such patterns motifs. Motifs are subsequences that repeat in several related
sequences. They are useful as a tool for summarizing and visualizing massive
time series databases.

Given a positive real number R (called range) and a time series T contain-
ing a subsequence C beginning at position p and of length n, and a subsequence
M beginning at q > p+n, if D(C,M) ≤ R, then M is called a matching sub-
sequence of C. Given a time series T , a subsequence length n and a range R,
the most significant motif in T (denoted as 1-Motif) is the subsequence C1

that has the highest count of matches. The Kth most significant motif in T
(called thereafter K-Motif) is the subsequence CK that has the highest count
of matches, and satisfies D(CK , Ci) > 2R, for all 1 ≤ i < K.

The Enumeration of Motifs through Matrix Approximation (EMMA) algo-
rithm begins by sliding a moving window of length n across the time series.
The subsequences is normalized, and converted to a symbolic representation
with parameters w (word length) and a (alphabet size). A hash function re-
ceived as input the SAX string, and computes an integer in the range 1 to wa:
h(C,w, a) = 1 +

∑w
i=1(ord(ĉi − 1) × ai−1) where ord(ĉi) is the ordinal value

of each symbol: ord(a) = 1, ord(b) = 2 and so forth.
Data is rearranged into a hash table with wa addresses, and a total of

size O(m). This arrangement of the data has the advantage of approximately
grouping similar subsequences together. This information is used as a heuris-
tic for motif search, If there is a overrepresented pattern in the time series, we
should expect that most copies of it hashed to the same location. The address
with the most hits corresponds to the most promising candidate. Neverthe-
less, it can contain some false positive subsequences. EMMA build a list of all
subsequences that mapped to this address, and use a brute force algorithm to
find the motifs.

11.4.3 Finding Discords using SAX

Keogh, Lin, and Fu (2005) extended SAX to the task of discovering the most
unusual time series subsequence, called discords, in time series. The technique
is termed as Hot SAX.

Discords are the time series subsequences that are maximally different from
the rest of the time series subsequences. Time series discords have many uses

190 Knowledge Discovery from Data Streams

for data mining, including data cleaning, and anomaly detection.
A brute force algorithm for finding discords is simple. Given the length

of the subsequence, take each possible subsequence of that length and find
the distance to the nearest non-self match. The subsequence with the greatest
distance is the discord. The brute force technique has complexity n2, where n
is the length of the sequence. The approach based on SAX, is 3 to 4 times faster
than brute force technique (Keogh et al., 2005). This makes it a candidate for
data streaming applications.

Hot-SAX process starts by passing a sliding window of a fixed size over the
whole time series. Each window generates one subsequence, which is approx-
imated using SAX. The SAX word is a much lower dimensional representation
for the time series. The SAX word is insert in a trie and in an array indexed
according to its position in the original time series. Leaf nodes in the trie con-
tains the array index where the word appears. The index refers to the starting
position of the SAX word in the original time-series The number of occur-
rences of each SAX word is also inserted in the array. The two data structures
(array and trie) complement each other. Both structures can be created in
time and space linear to the length of the time-series.

The number of occurrences of each SAX word is used to detect low (or high)
frequent patterns. Discords are patterns with lower frequency.

11.5 Notes

Time series are a well studied topic in statistics and signal processing.
Methods for time series analyses are often divided into two classes: frequency-
domain methods and time-domain methods. The reference technique is the
ARIMA methodology developed by Box and Jenkins (1976). The analysis of
a series of data in the frequency domain includes Fourier transforms and its
inverse (Brigham, 1988). More recent techniques, multiresolution techniques,
attempt to model time dependence at multiple scales.

Chapter 12

Ubiquitous Data Mining

Over the last years, a new world of small and heterogeneous devices (mo-
bile phones, PDA, GPS devices, intelligent meters, etc) as emerged. They are
equipped with limited computational and communication power, and have
the ability to sense, to communicate and to interact over some communica-
tion infrastructure. These large scale distributed systems have in many cases
to interact in real-time with their users. Ubiquitous Data Mining is an emerg-
ing area of research at the intersection of distributed and mobile systems
and advanced knowledge discovery systems. In this chapter we discuss some
introductory issues related to distributed mining (Section 12.2) and resource-
constraint mining (Section 12.4).

12.1 Introduction to Ubiquitous Data Mining

Many important applications require processing data streams originated
from or sent to resource-constrained distributed computing environments. The
dissemination of personal digital assistants (PDAs), smart phones, and GPS
systems users might request sheer amounts of data of interest to be streamed
to their mobile devices. Storing, retrieving, and querying these huge amounts
of data are infeasible due to resource limitations. Data stream mining can play
an important role in helping mobile users in on-the-move decision making. This
chapter focuses on techniques for mining distributed streams in resource-aware
environments.

The emergence of all kind of sensor networks, RFID’s, etc allows remote
data collection. Most recent generation of sensors are equipped with com-
putational power and communications devices. Knowledge discover in these
environments have unlimited research opportunities. To be able to act au-
tonomously, sensors must sense their environment and receive data from other
devices, and make sense of the gathered data. Sensors must to adapt contin-
uously to changing environmental conditions (including their own condition)
and evolving user habits and needs. This touches both short-term and real-
time adaptiveness and longer term capability for incremental learning and
changes detection. Moreover, they are resource-aware because of the real-time

191

192 Knowledge Discovery from Data Streams

constraint of limited memory, computer, and battery power and communica-
tion resources 1.

12.2 Distributed Data Stream Monitoring

Bhaduri and Kargupta (2008) presents an overview on distributed mining
approaches. The authors consider:

• The periodic approach is to simply rebuild the model from time to time;

• The incremental approach is to update the model whenever the data
changes;

• The reactive approach is to monitor the change, and rebuild the model
only when it no longer suits the data.

Their analysis of the different approaches is:

The periodic approach can be highly inefficient since, there is the
risk of wasting resources even if the data is stationary and also
the of risk model inaccuracy if the updating is delayed. Incremen-
tal algorithms are very efficient; however their major drawback is
that a separate algorithm needs to be handcrafted for every prob-
lem. Data driven reactive algorithms are efficient, simple and can
accommodate a wide variety of function computation.

Reactive approaches in data mining tasks over P2P networks, appear in
Wolff et al. (2006) for local L2-thresholding; Schuster et al. (2005) for associ-
ation rule mining; Bhaduri and Kargupta (2008) for multivariate regression;
Bhaduri et al. (2008) for learning distributed decision-trees, etc.

Some illustrative examples of real-time distributed stream mining include:
The MobiMine (Kargupta et al., 2002) system, a client/server PDA-based
distributed data mining application for financial data streams. The server
computes the most active stocks in the market, and the client in turn selects a
subset of this list to construct the personalized WatchList according to an opti-
mization module. The EnVironment for On-Board Processing - EVE (Tanner
et al., 2003) is used for astronomical data stream mining. Data streams are
generated from measurements of different on-board sensors. Only interesting
patterns are sent to the ground stations for further analysis preserving the
limited bandwidth.

1We should point out a step in this direction by the VFDT algorithm, described in Chap-
ter 8. VFDT has the ability to deactivate all less promising leaves in the case where the
maximum of available memory is reached. Moreover, the memory usage is also minimized,
eliminating attributes that are less promising.

Ubiquitous Data Mining 193

Algorithm 30: The Randomized Distributed Dot Product Algorithm.

1 - A sends B a random number generator seed. ;
2 - A and B cooperatively generate k ×m random matrix R where
k � m. Each entry is generated independently and identically from
some fixed distribution with mean zero and finite variance. ;

3 - A and B compute â = Ra, b̂ = Rb, respectively.;
4 - A sends â to B. ;

5 - B computes D = âT b̂
k

The MineFleet system (Kargupta et al., 2007) is a real-time mobile data
stream mining environment where the resource-constrained small computing
devices need to perform various non-trivial data management and mining tasks
on-board a vehicle in real-time. MineFleet analyzes and monitors the data
generated by the vehicle’s on-board diagnostic system and the Global Posi-
tioning System (GPS). It continuously monitors data streams generated by a
moving vehicle using an on-board computing device, identifies the emerging
patterns, and reports these patterns to a remote control center over a low-
bandwidth wireless network connection. This involves computing various em-
pirical properties of the data distribution such as correlation, inner-product,
and Euclidean distance matrices in a resource-constrained environment.

12.2.1 Distributed Computing of Linear Functions

To illustrate the challenges that emerge from distributed data, consider two
sets of measurements q = (q1, . . . , qm) and s = (s1, . . . , sm) at two distributed
sites Q and S, respectively. Suppose we want to approximate the Euclidean
distance between them.

The problem of computing the Euclidean distance between a pair of data
vectors q and s can be represented as:

m∑
i=1

(qi − si)2 ⇔
m∑
i=1

(q2
i + s2

i − 2qisi)⇔
m∑
i=1

q2
i +

m∑
i=1

s2
i − 2

m∑
i=1

qisi.

Each node has information to compute the sum of squares of its own data
points, the main problem is in computing

∑
qi × si, that is the dot product

〈q · s〉, because it requires sharing information between peers. How can we
compute the Euclidean distance, minimizing the messages between Q and S?

Randomization is a useful technique in distributed computing. A simple
and communication efficient example of randomization techniques for com-
puting the inner product between two vectors observed at two different sites
is illustrated by Algorithm 30 (Park and Kargupta, 2002). Instead of sending
a m-dimensional vector to the other site, we only need to send a k-dimensional
vector where k � m (a user-defined parameter) and the dot product can still

194 Knowledge Discovery from Data Streams

be estimated accurately. As a matter of fact, it can be shown that the expected
value of D is 〈q · s〉.

12.2.1.1 A General Algorithm for Computing Linear Functions

Wolff, Bhaduri, and Kargupta (2009) present a general algorithm to com-
pute functions of linear combinations of the data in a distributed system.

Consider a set of peers V = {p1, . . . , pn} connected to one another via some
communication infrastructure. The set of peers with which pi can directly
communicate Ni is known to pi. Each pi measures a time varying input vector
in <d. Peers send sets of input vectors to its neighbors. Denote Xi,j the latest
set of vectors send by peer pi to pj . Thus, the latest set of input vectors known
to pi is Ki =

⋃
pj∈Ni Xj,i, which is designated by the knowledge of pi. The

agreement between pi and any neighbor pj ∈ Ni is Ai,j = Xi,j ∪ Xj,i. The
withheld knowledge of pi with respect to a neighbor pj is the difference between
agreement and knowledge Wi,j = Ki \ Ai,j . The set of all inputs is the global
input: G =

⋃
pi∈V Xi,i. The goal is to induce linear functions F over G. Since

G is not available at any pear pi, Wolff et al. (2009) derive conditions on Ki,
Ai,j and Wi,j which allow to learn F in G. The main result is the theorem:

Theorem 12.2.1 (Convex Stopping Rule) Let G(V,E) be a spanning tree
in which V is a set of peers and let Xi,i be the input of peer pi, Ki be its knowl-
edge and Ai,j and Wi,j be its agreement and withheld knowledge with respect
to a neighbor Pj ∈ Ni. Let R ⊆ <d be any convex region. If at a given time
no message traverses the network and for all pi and pj ∈ Ni, and Ki ∈ R and
Ai,j ∈ R and either Wi,j = 0 or Wi,j ∈ R, then G ∈ R.

The relevance of Theorem 12.2.1 is that, under the conditions described,
Ki and G reside in the same convex region, so pi can stop sending messages to
its neighbors and output ||Ki||. If the conditions of the theorem hold for every
peer, the Theorem 12.2.1 guarantees this is the correct solution; otherwise
there must be messages in transit, or some peer pk for whom the condition
does not hold. In this case, pk must send a message that will change its output,
or will receive a message that eventually changes Ki.

Based on this theorem, the authors present several specific algorithms for
specific functions F . Here, we will focus on an interesting function: thresh-
olding the L2 norm of the average vector, that is deciding if ||G|| < ε (Algo-
rithm 31). In this case, the area where F is true is inside of an ε circle and is
convex. This area is denoted by Rin. The area outside the ε-circle can be di-
vided using tangents to random unit vectors ûi that define convex half-regions
Hj = {~x : ~x · ûj ≥ ε}. They are entirely outside the circle, so F is false. The
area between the half-spaces and the circle is a tie area (T). The space is
covered by {Rin, H1, . . . ,Hl, T} (see Figure 12.1a).

If, for every peer and each of its neighbors, both the agreement and the
withheld knowledge are in a convex shape, then so is the global average (see
Figure 12.1b). Each peer pi checks if its Xi, Ai,j and Wi,j are inside a circle

Ubiquitous Data Mining 195

Figure 12.1: The left figure plots the cover of the space: the ε-circle is in
white, the half-spaces are defined by the tangents to vectors ~u in gray, and
the tie regions in dark. For peer pi: ~X is its own estimate of global average,
~A is the agreement with neighbor Pj , and ~W is the withheld knowledge w.r.t

neighbor Pj (~W = ~X − ~A). In the first figure all the peer estimates are inside
the circle. Both the agreement and withheld knowledge are inside too. Hence
according to the theorem, the global average is inside the circle.

of radius ε (Figure 12.1b), outside the polygon defined by the tangents to
d spaced vectors (Figure 12.1c) of length ε, or between the circle and the
polygon, the tie region. In the first case, the peer does not need to send data.
In the second case, peers need to communicate to verify if the conditions of
the theorem holds. In the third case, the peer has to propagate any data it
has to its neighbors.

The Algorithm 31 is event driven. A peer needs to send a message when
its local data change, if it receives a message from another peer, or if the set
of neighbors changes. In any of these cases, the peer checks if the condition of
the theorem holds. First, the peer Pi finds the region R such that ~Ki ∈ R. If
R = T , then ~Ki is in a tie region and hence Pi has to send all its data. If, for
all Pj ∈ Ni, both ~Ai,j ∈ R and ~Wi,j ∈ R, Pi does nothing; otherwise it needs
to set Xi,j and Xi,j and send these, such that after the message is sent, the
condition of the theorem holds for this peer. Similarly, whenever it receives a
message (~X and | ~X|), it sets ~Xj,i ← ~X and | ~Xj,i| ← | ~X|. This may trigger

another round of communication since its ~Ki can now change. The algorithm
is intended for asynchronous systems. This is the justification for the waiting
loop to restrict the frequency in which messages are sent.

12.2.2 Computing Sparse Correlation Matrices Efficiently

Sparse correlation matrices are of particular interest because of their use in
monitoring applications. As pointed out in Kargupta, Puttagunta, Klein, and
Sarkar (2007), such correlation matrices are widely prevalent, since in most
real-life high dimensional applications features are not highly correlated with

196 Knowledge Discovery from Data Streams

Algorithm 31: Local L2 Thresholding

Input of peer pi: ε, L, Xi,i, Ni, l ;
Global constants: A random seed s;

Data structure for pi: For each pj ∈ Ni Xi,j , |Xi,j |, Xj,i, |Xj,i|,
last message;

Output of peer pi: 0 if ||Ki|| < ε, 1 otherwise;
Computation of <F :
- Let Rin = {~x : ||~x|| ≤ ε};
- Let û1, . . . , ûl be pseudo-random unit vectors ;
- Let Hj = {~x : ~x · ûj ≥ ε} ;
- Let <F = {Rin, H1, . . . ,Hl, T} ;

Computation of Xi,j and |Xi,j |: ;

|Xi,j | ← |Ki|Ki−|Xj,i|Xj,i
|Ki|−|Xj,i| ;

w ← |X| ← |Ki| − |Xj,i| ;

while (Ai,j /∈ RF (Ki)orWi,j /∈ RF (Ki)and|Wi,j | 6= 0) do
w ← |w/2| and |Xi,j ← |Ki| − |Xj,i| − w| ;

Initialization: last message← −∞, computeRF ;

On receiving a message X, |X| from pj: ;

- Xi,j ← X and |Xi,j | ← |X| ;

On change in Xi,i, Ni, Ki or |Ki|: call OnChange();
OnChange(): ;
- foreach pj ∈ Ni: do

if one of the following conditions occur:
- 1 RF (Ki) = T and either Ai,j 6= Ki or |Ai,j | 6= |Ki| ;
- 2 |Wi,j | = 0 and |Ai,j | 6= |Ki| ;

- 3 Ai,j /∈ RF (Ki) or Wi,j /∈ RF (Ki) then
call SendMessage(pj)

SendMessage(pj): ;
- if time()− last message ≥ L then

if RF (Ki) = T then
Xj,i ←Wj,i;
|Xj,i| ← |Wj,i|

else
Compute Xj,i and |Xj,i| ;
last message← time();

Send Xj,i and |Xj,i| to pj

else
Wait L− (time()− last message) time units and call OnChange()

Ubiquitous Data Mining 197

every other feature. Instead, only a small group of features are usually highly
correlated with each other. This results in a sparse correlation matrix. In most
stream applications, for example those previously enumerated in this chapter,
the difference in the consecutive correlation matrices generated from two sub-
sequent sets of observations is usually small, thereby making the difference
matrix a very sparse one.

In the following we present the FMC algorithm, developed by Kargupta
et al. (2007), to determine the significant coefficients in a matrix generated
from the difference of the correlation matrices obtained at different times. The
method is used to:

1. Detect significant correlation coefficients;

2. Detect whether something changed in the correlations matrix;

3. Identify subspaces in the correlation matrix that are likely to contain
the significantly changed coefficients.

12.2.2.1 Monitoring Sparse Correlation Matrices

Given a data matrix U with m observations and n features, the correla-
tion matrix is computed by UTU , assuming that the columns of U are nor-
malized to have zero mean and unit length. A straight-forward approach to
compute the correlation matrix using matrix multiplication takes O(mn2)
number of multiplications. FMC (Kargupta et al., 2007) uses a more efficient
technique for computing and monitoring sparse correlation matrices. In or-
der to achieve this, the authors first demonstrate how to estimate the sum
of squared values of the elements in the correlation matrix that are above
the diagonal. They define this sum as C =

∑
1≤j1<j2≤n Corr

2(j1, j2), where

Corr(j1, j2) =
∑m
i=1 ui,j1ui,j2 represents the correlation coefficient between

the feature corresponding to the j1–th and j2–th columns of the data matrix
U . This approach uses a randomized algorithm (Motwani and Raghavan, 1997)
to compute C which will be used to test the existence of significant correlation
coefficients. Consider an m× n data matrix U and an n-dimensional random
vector σ = [σ1, σ2, · · · , σn]T , where each σj ∈ {−1, 1} is independently and
identically distributed. Let vi be a random projection of the i-th row of the
data matrix U using this random vector σ, that is: vi =

∑n
j=1 ui,jσj Define a

random variable Z = (
∑m
i=1 v

2
i − n)/2 and X = Z2. Then,

E[X] = C =
∑

1≤j1<j2≤n

Corr2(ji, j2) (12.1)

and V ar[X] ≤ 2C2, where E[X] and V ar[X] represent the expectation and
the variance of the random variable X, respectively.

198 Knowledge Discovery from Data Streams

12.2.2.2 Detecting Significant Correlations

Given a subset L = {j1, j2, · · · , jk} of k–columns from the data matrix U ,
let UL be the data matrix with only data column vectors from the set L, i.e.
UL = [uj1 , uj2 , · · ·ujk]. In order to detect if any of these columns are strongly
correlated, we first estimate C for UL using the previous approach. Let CL
be the true value of C over this pruned dataset and YL be the estimated
value. If any of the correlation coefficients has a magnitude greater than θ,
then the true value of CL must be a value greater than or equal to θ2 (from
Chebyshev inequality). This test is used to determine whether or not there are
any significant correlations among the data columns in UL. If the estimated
value YL is less than θ2, we declare that the columns L = {j1, j2, · · · , jk} are
not significantly correlated.

This technique can be used to design a divide and conquer strategy that
first checks the possible existence of any significant correlation coefficient
among a set of data columns before actually checking out every pair-wise coef-
ficient. If the test turns out to be negative, then we discard the corresponding
correlation coefficients for further consideration. The algorithm performs a
tree-search in the space of all correlation coefficients. Every leaf-node of this
tree is associated with a unique coefficient; every internal node a is associated
with the set of all coefficients corresponding to the leaf-nodes in the subtree
rooted at node a. The algorithm tests to see if the estimated Ca ≥ θ2 at every
node starting from the root of the tree. If the test determines that the subtree
is not expected to contain any significant coefficient, then the corresponding
sub-tree is discarded. Otherwise, the search proceeds in this sub-tree.

12.2.2.3 Dealing with Data Streams

Let U (t) and U (t+1) be the consecutive data blocks at times t and t + 1
respectively. Let Corr(j

(t)
1 , j

(t)
2) be the correlation coefficients between the j1–

th column and the j2–th column of U (t) and, similarly, let Corr(j
(t+1)
1 , j

(t+1)
2)

be the correlation coefficients between j1–th column and j2–th column of
U (t+1). Along the same lines, let Z(t) and Z(t+1) be the estimated values of Z
for the two data blocks at times t and t+ 1, respectively. Let X(t) and X(t+1)

be the corresponding estimated values of X. Note that we use the same σs for
computing X(t) as well as X(t+1). Let us define,

∆(t+1) = Z(t+1) − Z(t)

Then we can find the expected value of
(
∆(t+1)

)2
in a manner similar to

finding E[X] described earlier (Equation 12.1).

E[
(

∆(t+1)
)2

] =
∑

1≤j1<j2≤n

(
Corr(j

(t+1)
i , j

(t+1)
2)− Corr(j(t)

i , j
(t)
2)
)2

This can be used to directly look for significant changes in the correla-
tion matrix using the divide and conquer strategy previously described. This

Ubiquitous Data Mining 199

method is used to detect whether something changed in the correlations ma-
trix, and identify subspaces in the correlation matrix that are likely to contain
the significantly changed coefficients.

12.3 Distributed Clustering

Consider a sensor network scenario where each sensor produces a continu-
ous stream of data. Suppose we have m distributed sites, and each site i has
a data source Sti at time t. The goal is to continuously maintain a k-means
clustering of the points in St = ∪mi Sti .

12.3.1 Conquering the Divide

This problem has been discussed in a seminal paper Conquering the Divide:
Continuous Clustering of Distributed Data Streams (Cormode et al., 2007),
where several distributed algorithms were discussed. The base algorithm is the
Furthest Point clustering (Gonzalez, 1985), a 2-approximation of the optimal
clustering.

12.3.1.1 Furthest Point Clustering.

The base idea consists in randomly selecting the first cluster center c1
among data points. Subsequent k − 1 cluster centers are chosen as the points
that are more distant from the previous centers C = {c1, c2, . . . , ci−1}, by
maximizing the minimum distance to the centers. This algorithm requires k
passes over training points. It has an interesting property. It ensures a 2-
approximation of the optimal clustering. A skeleton of the proof is: Suppose
that the k + 1 iteration produces k + 1 points separated by a distance at
least D. The optimal k clustering must have a diameter at least D. By the
triangular inequality, the chosen clustering has diameter of at most 2×D.

12.3.1.2 The Parallel Guessing Clustering

Based on the Furthest Point algorithm, Cormode et al. (2007) developed
a one pass clustering algorithm: the Parallel Guessing Clustering. The base
idea consists in selecting an arbitrary point (pj) as the first center. The set of
centers is initialized as C = {pj}. Then, for each incoming point p, compute
rp = minc∈Cd(p, c). If rp > R, set C = C ∪ p. This strategy would be correct
if we knew R. However, in unbounded data streams, R is unknown in advance.
The solution proposed by Cormode et al. (2007) consists in making multiple
guesses for R as (1 + ε/2), (1 + ε/2)2, (1 + ε/2)3, and run the algorithm in
parallel. If a guess for the value of R generates more than k centers, this
imply that R is smaller than the optimal radius (Ro). When R ≥ 2R0 and k

200 Knowledge Discovery from Data Streams

or less centers are found, then a valid clustering is generated. Each local site
maintains a Parallel Guessing Algorithm using its own data source. Whenever
it reaches a solution, it sends to the coordinator the k centers and the radius
Ri. Each local site only re-sends information when the centers change. The
coordinator site maintains a Furthest Point Algorithm over the centers sent
by local sites.

12.3.2 DGClust – Distributed Grid Clustering

Rodrigues et al. (2008) present a distributed grid clustering algorithm for
sensor networks. The main intuition behind DGClust is to reduce dimension-
ality, by monitoring and clustering only frequent states, and communication,
by applying online sensor data discretization and controlled transmission to
a central server. Each local sensor receives data from a given source, produc-
ing a univariate data stream, which is potentially infinite. Data are processed
locally, being incrementally discretized into a univariate adaptive grid. Each
new data point triggers a cell in this grid, reflecting the current state of the
data stream at the local site. Whenever a local site changes its state, that is,
the triggered cell changes, the new state is communicated to a central site.

The central site keeps the global state of the entire network where each
local sites state is the cell number of each local sites grid. The number of
cell combinations to be monitored by the central site can be huge in large
sensor networks. However, it is expected that only a small number of this
combinations are frequently triggered by the whole network, as observed in the
example sketched in Figure 12.2. Thus, the central site keeps only a small list
of counters of the most frequent global states. Finally, the current clustering
definition is defined and maintained by a simple adaptive partitional clustering
algorithm applied on the frequent states central points.

12.3.2.1 Local Adaptive Grid

The incremental discretization at each sensor univariate stream Xi uses
the Partition Incremental Discretization (PiD) algorithm (Gama and Pinto,
2006) 2, which consists of two layers. The first layer simplifies and summarizes
the data, while the second layer constructs the final grid. Within the scope
of this work, we consider only equal-width discretization. Although equal-
frequency discretization may seem better, it implies heavier computation and
communication, and its benefits fade out with the frequent state monitoring
step.

Each local site i keeps the two-layered discretization of the univariate
stream, with pi intervals in the first layer and wi intervals in the second layer,
where k < wi << pi but wi ∈ O(k). At each time t, each local sensor produces
a value Xi(t) and defines its local discretized state si(t), drawn from the set of
possible states Si, the unit cells in the univariate grid (|Si| = wi). If no value

2Described in Section 4.3.

Ubiquitous Data Mining 201

Figure 12.2: Example of a 2-sensor network. Although the number of cells to
monitor increases exponentially with the number of sensors (dimensions), and
unless data is uniformly distributed in all dimensions (extremely unlikely in
usual data) the data occupy much less cells. Left plot presents an equal-width
discretization, while right plot presents an equal-frequency discretization.

is read, or si(t) = si(t−1), no information is sent to the central site. The pro-
cess of updating the first layer works online, doing a single scan over the data
stream, hence being able to process infinite sequences of data, processing each
example in constant time and (almost) constant space. The update process of
the second layer works online along with the first layer. For each new example
Xi(t), the system increments the counter in the second-layer cell where the
triggered first-layer cell is included, defining the discretized state si(t). The
grid represents an approximated histogram of the variable produced at the
local site.

The central site monitors the global state of the network at time t by
combining each local discretized state s(t) = 〈s1(t), s2(t), ..., sd(t)〉. Each s(t)
is drawn from a finite set of cell combinations E = {e1, e2, ..., e|E|}, with

|E| =
∏d
i=1 wi. Given the exponential size of E, the central site monitors only

a subset F of the top-m most frequent elements of E, with k < |F | << |E|.
Relevant focus is given to size requirements, as |E| ∈ O(kd), but |F | ∈ O(dkβ),
with small β. Finally, the top-m frequent states central points are used in an
online adaptive partitional clustering algorithm, which defines the current k
cluster centers, being afterwards continuously adapted.

12.3.2.2 Frequent State Monitoring

DGClust considers synchronous processing of sensor data. The global state
is updated at each time stamp as a combination of each local sites state, where
each value is the cell number of each local sites grid, s(t) = 〈s1(t), s2(t), ..., sd(t)〉.
If in that period no information arrives from a given local site i, the central
site assumes that site i stays in the previous local state (si(t) ← si(t − 1)).

202 Knowledge Discovery from Data Streams

Given that common sensor networks usually imply asynchronous communica-
tion, this problem could be easily coped with using a time frame where the
central server could wait for data from the nodes.

A major issue with our setting is that the number |E| of cell combinations
to be monitored by the central site is exponential to the number of sensors,
|E| = O(wd). However, only a small number of this combinations represent
states which are frequently visited by the whole network. This way, the central
site keeps a small list, F , of counters of the most frequent global states, whose
central points will afterwards be used in the final clustering algorithm, with
|F | = O(dkβ), for small β.

Each seen global state e ∈ E is a frequent element fr whose counter countr
currently estimates that it is the rth most frequent state. The system applies
the Space-Saving algorithm (Metwally et al., 2005) to monitor only the top-m
elements.

One important characteristic of this algorithm is that it tends to give
more importance to recent examples, enhancing the adaptation of the system
to data evolution. This is achieved by assigning to a new state entering the
top-m list one plus the count of hits of the evicted state. Hence, even if this
is the first time this state has been seen in the data, it will be at least as
important to the system as the one being discarded.

12.3.2.3 Centralized Online Clustering

The goal of DGClust is to find and continuously keep a cluster definition,
reporting the k cluster centers. Each frequent state fi represents a multivariate
point, defined by the central points of the corresponding unit cells si for each
local site Xi. As soon as the central site has a top-m set of states, with m > k,
a simple partitional algorithm can start, applied to the most frequent states.

In the general task of finding k centers given m points, there are two major
objectives: minimize the radius (maximum distance between a point and its
closest cluster center) or minimize the diameter (maximum distance between
two points assigned to the same cluster) (Cormode et al., 2007). This strategy
gives a good initialization of the cluster centers, computed by finding the
center ki of each cluster after attracting the remaining points to the closest
center ci. This algorithm is applied as soon as the system finds a set of m′ > k
guaranteed top-m states.

It is known that a single iteration is not enough to converge to the actual
centers in simple k-means strategies. Hence, we consider two different states on
the overall system operation: converged and non-converged. At every new state
s(t) that is gathered by the central site, if the system has not yet converged,
it adapts the clusters centers using the m′ guaranteed top-m states.

If the system has already converged, two different scenarios might occur.
If the current state is being monitored as one of the m′ top-m states, then the
set of points actually used in the final clustering is the same, so the clustering
centers remain the same. No update is performed. However, if the current state

Ubiquitous Data Mining 203

Figure 12.3: Example of final definition for 2 sensors data, with 5 clusters.
Each coordinate shows the actual grid for each sensor, with top-m frequent
states (shaded cells), gathered (circles) and real (crosses) centers, for different
grid resolutions.

has just become guaranteed top-m, then the clusters may have changed so we
move into a non-converged state of the system, updating the cluster centers.
Another scenario where the clusters centers require adaptation is when one
or more local sites transmit their new grid intervals, which are used to define
the central points of each state. In this case, we also update and move to
non-converged state.

Figure 12.3 presents an example of a final grid, frequent cells and cluster
centers for a specific case with d = 2, k = 5, for different values of w and m.
The flexibility of the system is exposed, as different parameter values yield
different levels of results. Moreover, the continuous update keeps track of the
most frequent cells, keeping the gathered centers within acceptable bounds. A
good characteristic of this system is its ability to adapt to resource restricted
environments: system granularity can be defined given the resources available
in the network processing sites.

204 Knowledge Discovery from Data Streams

12.4 Algorithm Granularity

Many important applications require data streams to be originated from
or sent to resource-constrained computing environments. Sensing equipments
onboard astronomical spacecrafts, for example, generate large streaming data
that represent a typical example in this context. Transferring this amount of
data to the ground stations for analysis and decision making is infeasible due
to bandwidth limitation of the wireless communication (Castano et al., 2003;
Srivastava and Stroeve, 2003; Tanner et al., 2003). The applicable solution
is for the data analysis to take place onboard the spacecraft. The results are
then sent periodically to the ground stations for further analysis by scientists.
Another motivating application is analyzing data generated in wireless sensor
networks. The same analogy is applied with the additional constraint of having
sensor nodes consuming their energy rapidly with data transmission (Bhargava
et al., 2003). In-network data analysis onboard sensor nodes are a valid and
possible solution to preserve energy consumption.

The last two cases represent the need for on-board data analysis. Data
received in resource-constrained environment represent a different category
of applications. With the dissemination of Personal Digital Assistants PDAs
and smart phones, users might request sheer amounts of data of interest to be
streamed to their mobile devices. Storing and retrieving these huge amounts
of data are also infeasible due to resource limitations. Data stream mining
can play an important role in helping mobile users in on-the-move decision
making.

The previous cases and others stimulate the need for data stream mining
in resource-constrained environments. However, most of the techniques devel-
oped so far have addressed the research challenges posed by processing high
speed data streams by applying lightweight techniques without consideration
of resource availability (Gaber et al., 2005). There is an obvious need for tech-
niques that can adapt to variations of computational resources. This need is
based on the following arguments:

• It has been proven experimentally (Bhargava et al., 2003) that running
mining techniques on-board resource-constrained devices consumes less
energy than transmitting data streams to a high performance central
processing power;

• Extremely large amounts of flowing data streams from 1 Mb/Second for
oil drills (Muthukrishnan, 2005) to 1.5 TB/day for astronomical appli-
cations (Coughlan, 2004); and

• The resource constraints of data stream sources and processing units in
a wide range of stream applications including wireless sensor networks
and mobile devices.

Ubiquitous Data Mining 205

The algorithm granularity is the first generic approach to address the issue
of adapting the algorithm parameters, and consequently the consumption rate
of computational resources dynamically. In the following three sections, details
of this approach including an overview, formalization and a generic procedure
are presented.

12.4.1 Algorithm Granularity Overview

Resource consumption patterns represent the change in resource consump-
tion over a period of time which we term as time frame. The algorithm gran-
ularity settings are the input, output, and processing settings of a mining
algorithm that can vary over time to cope with the availability of resources
and current data stream arrival rate. The following are definitions of each of
these settings:

Algorithm Input Granularity (AIG): represents the process of changing the
data stream arrival rates that feed the algorithm. Examples of techniques that
could be used include sampling, load shedding, and creating data synopsis.

Algorithm Output Granularity (AOG): is the process of changing the out-
put size of the algorithm in order to preserve the limited memory space. We
refer to this output as the number of knowledge structures. For example num-
ber of clusters or association rules.

Algorithm Processing Granularity (APG): is the process of changing the
algorithm parameters in order to consume less processing power. Randomiza-
tion and approximation techniques represent the strategies of APG.

It should be noted that there is a collective interaction among the previ-
ous three settings. AIG mainly affects the data rate and it is associated with
bandwidth consumption and battery. On the other hand, AOG is associated
with memory and APG is associated with processing power. However changes
in any of them affect the other resources. The process of enabling resource
awareness should be very lightweight in order to be feasible in a streaming
environment characterized by its scarcity of resources. Accordingly, the al-
gorithm granularity settings only consider direct interactions, as shown in
Figure 12.4.

12.4.2 Formalization of Algorithm Granularity

The Algorithm Granularity requires continuous monitoring of the compu-
tational resources. This is done over fixed time intervals/frames, here denoted
as TF . According to this periodic resource monitoring, the mining algorithm
changes its parameters to cope with the current consumption patterns of re-
sources. These parameters are AIG, APG and AOG settings discussed briefly
in the previous section. It has to be noted that setting the value of TF is
critical for the success of the running technique. The higher the TF is, the
lower the adaptation overhead will be, but at the expense of risking a high
consumption of resources during the long time frame. The use of Algorithm

206 Knowledge Discovery from Data Streams

Figure 12.4: The Effect of Algorithm Granularity on Computational Re-
sources

Granularity as a general approach for mining data streams will require some
formal definitions and notations. The following definitions will be used next:

• R: set of computational resources R = {r1, r2, . . . , rn};

• TF : time interval for resource monitoring and adaptation;

• ALT : application lifetime;

• ALT ′: time left to last the application lifetime;

• NoF (ri): number of time frames to consume the resources ri, assuming
that the consumption pattern of ri will follow the same pattern of the
last time frame;

• AGP (ri): algorithm granularity parameter that affects the resource ri.

Accordingly, the main rule to be used to use the algorithm granularity
approach is as follows:

IF ALT ′

TF > NoF (ri) THEN SET AGP (ri)− ELSE SET AGP (ri)+

Where AGP (ri)+ achieves higher accuracy at the expense of higher con-
sumption of the resource ri, and AGP (ri)− achieves lower accuracy at the
advantage of lower consumption of the resource ri.

This simplified rule could take different forms according to the monitored
resource and the algorithm granularity parameter applied to control the con-
sumption of this resource. Interested readers are referred to Gaber and Yu
(2007) for applying the above rule in controlling a data stream clustering
algorithm termed as RA-Cluster.

Ubiquitous Data Mining 207

12.4.2.1 Algorithm Granularity Procedure

Interested practitioners can use the following procedure for enabling re-
source awareness and adaptation for their data stream mining algorithms.
The procedure follows the following steps:

1. Identify the set of resources that mining algorithm will adapt accordingly
(R);

2. Set the application lifetime (ALT) and time interval/frame (TF);

3. Define AGP (ri)+ and AGP (ri)− for every ri ∈ R;

4. Run the algorithm for TF ;

5. Monitor the resource consumption for every ri ∈ R;

6. Apply AGP (ri)+ or AGP (ri)− to every ri ∈ R according to the ratio
ALT ′

TF : NoF (ri) and the rule given in Section 12.4.2;

7. Repeat the last three steps.

Applying the previous procedure is all what is needed to enable resource
awareness and adaptation, using the algorithm granularity approach, to stream
mining algorithms. Further details on Algorithm Output Granularity are pre-
sented in the following sections.

12.4.2.2 Algorithm Output Granularity

The Algorithm Output Granularity is designed in a such way that controls
the input/output rate of the mining algorithm taking into account the data
stream rate and computational resources availability. AOG operates using
three factors to enable the adaptation of the mining algorithm to the available
memory.

1. The rate of the incoming data stream;

2. The rate of the algorithm output;

3. From these two, an estimated time to fill the available memory according
to the logged history of data rate and algorithm output rate is calculated.

These three factors are used to adjust what we call the algorithm threshold.
The algorithm threshold encourages (or not) the creation of new outputs in
accordance with the available memory, the data stream rate, and the mining
technique. Figure 12.5 shows how the algorithm threshold can control the
output rate of a mining algorithm according to the three factors that AOG
operates on. The data arrives sequentially and its rate is calculated. The
algorithm runs with an initial threshold value, and the rate of the output is
calculated. The threshold is adjusted periodically to conserve the available
memory according to the relationship among the three factors.

208 Knowledge Discovery from Data Streams

Figure 12.5: The Algorithm Output Granularity Approach.

AOG is a three-stage, resource-aware threshold-based data stream mining
approach.

1. Mining Phase.
In this step, the algorithm threshold that can control the algorithm
output rate is determined as an initial value set by the user of the system
(or preset to a default initial value).

2. Adaptation Phase.
In this phase, the threshold value is adjusted to cope with the data rate
of the incoming stream, the available memory, and time constraints to
fill the available memory with resultant knowledge structures.

3. Knowledge Integration Phase.
This phase represents the merging of produced results when the compu-
tational device is running out of memory.

AOG has been instantiated for several data mining tasks (Gaber et al.,
2004). The approach was implemented for data stream mining in:

• Clustering: the threshold is used to specify the minimum distance be-
tween the cluster center and the data stream record. Clusters that are
within short proximity might be merged.

• Classification: in addition to using the threshold in specifying the dis-
tance, the class label is checked. If the class label of the stored records
and the new item/record that are close (within the accepted distance)
is the same, the weight of the stored item is increased and stored along
with the weighted average of the other attributes, otherwise the weight
is decreased and the new record is ignored.

Ubiquitous Data Mining 209

Figure 12.6: Algorithm Output Granularity Stages.

• Frequent patterns: the threshold is used to determine the number of
counters for the frequent items and releasing the least frequent items
from memory.

This integration allows the continuity of the data mining process. Other-
wise the computational device would run out of memory even with adapting
the algorithm threshold to its highest possible value that results in the lowest
possible generation of knowledge structures. Figure 12.6 shows a flowchart of
AOG-mining process. It shows the sequence of the three stages of AOG.

The algorithm output granularity approach is based on the following rules:

• The algorithm output rate (AR) is a function of the data rate (DR), i.e.,
AR = f(DR). Thus, the higher the input rate, the higher the output
rate. For example the number of clusters created over a period of time
should depend on the number of data records received over this period
of time.

• The time needed to fill the available memory by the algorithm results
(knowledge structures namely: clusters, classification models and fre-
quent items) (TM) is a function of (AR), i.e., TM = f(AR). Thus,
a higher output rate would result in shorter time to fill the available
memory assigned for the application.

• The algorithm accuracy (AC) is a function of (TM), i.e., AC = f(TM).
If the time of filling the available memory is considerably short, that
would result in a higher frequency of knowledge integration such as
cluster merging. The higher the frequency of knowledge integration, the
less accurate the results are.

210 Knowledge Discovery from Data Streams

12.5 Notes

Scalable and distributed algorithm for decision tree learning in large and
distributed networks were reported in Bar-Or et al. (2005) and Bhaduri et al.
(2008). Kargupta and Park (2001) present a Fourier analysis-based technique
to analyze and aggregate decision trees in mobile resource-aware environ-
ments. Branch et al. (2006) address the problem of unsupervised outlier de-
tection in wireless sensor networks. Chen et al. (2004) present distributed
algorithms for learning Bayesian networks.

Privacy-preserving Data Mining (Agrawal and Srikant, 2000) is an emerg-
ing research topic, whose goal is to identify and disallow mining patterns that
can reveal sensitive information about the data holder. Privacy-preserving is
quite relevant in mining sensitive distributed data.

The gossip algorithms (Boyd et al., 2006) are a class of distributed asyn-
chronous algorithms for computation and information exchange in an arbitrar-
ily connected network of nodes. Nodes operate under limited computational,
communication and energy resources. These constraints naturally give rise to
gossip algorithms: schemes which distribute the computational burden and in
which a node communicates with a randomly chosen neighbor. Bhaduri and
Kargupta (2008) argue that the major drawback of gossip algorithms is their
scalability and the slow answer to dynamic data.

Chapter 13

Final Comments

Data Mining is faced with new challenges. All of them share common issues:
continuously flow of data generated by evolving distributions, the domains
involved (the set of attribute-values) can be also huge, and computation re-
sources (processing power, storage, bandwidth, and battery power) are lim-
ited. In this scenario, Data Mining approaches involving fixed training sets,
static models, stationary distributions, and unrestricted computational re-
sources are almost obsolete.

The next generation of Data Mining implies new requirements to be con-
sidered. The algorithms will have to use limited computational resources (in
terms of computations, space and time). They will have only a limited direct
access to data and may have to communicate with other agents on limited
bandwidth resources. In a community of smart devices, answers will have to
be ready in an anytime protocol. Machine Learning algorithms will have to
enter the world of limited rationality: they are limited by the information they
have, the resources available, and the finite amount of time they have to make
decisions. These are the main lesson learned in this book.

13.1 The Next Generation of Knowledge Discovery

Aside the computational and communication problems inherent to ubiqui-
tous environments, there are issues linked to the nature of the data themselves.
As soon as one is contemplating lifelong learning tasks with data originating
from various places, new problems arise. Clearly, we can identify three cat-
egories of questions. The first one is related to the fact that data are geo-
graphically situated. The second is related to the temporal nature of the data
generation from which several aspects are important for learning because the
underlying regularities may change over time. The third is related with struc-
tured (or semi-structured) data available through the Internet, attached with
semantic information. In the following, these three categories of problems are
examined in turn.

211

212 Knowledge Discovery from Data Streams

13.1.1 Mining Spatial Data

There are now several data generation environments where the nodes gen-
erating the data are spatially spread and interrelated and where these relations
are meaningful and important for Data Mining tasks. Examples include satel-
lite recordings, emergence of mobile phones, GPS and RFID devices, all kind
of sensor networks, etc. The spatial information is essential in the discov-
ery of meaningful regularities from data. Most of the works on spatial data
mining has been scarce even though applications in satellite remote sensing
and geographical databases have spurred a growing interest in methods and
techniques to augment databases management and perform Data Mining with
spatial reasoning capabilities.

13.1.2 The Time Situation of Data

The fact that, in ubiquitous environments, data are produced on a real-
time basis, or, at least, in a sequential fashion, and that the environment
and the task at hand may change over time, profoundly modifies the underly-
ing assumptions (examples are independently and identically distributed) on
which most of the existing learning techniques are based and demands the
development of new principles and new algorithms.

When the samples of data are both spatially and time situated, data points
can no longer be considered as independently and identically distributed, a
fact that is reinforced when the underlying generative process is itself changing
over time.

13.1.3 Structured Data

In some challenging applications of Data Mining, data are better described
by sequences (for example DNA data), trees (XML documents), and graphs
(chemical components). Tree mining in particular is an important field of
research (Bifet and Gavaldà, 2008, 2009). XML patterns are tree patterns, and
XML is becoming a standard for information representation and exchange over
the Internet; the amount of XML data is growing, and it will soon constitute
one of the largest collections of human knowledge.

13.2 Where We Want to Go

What makes current learning problems different from earlier problems is
the large volume and continuous flow of distributed data. These characteristics
impose new constraints on the design of learning algorithms. Large volumes
of data require efficient bias management, while the continuous flow of data

Final Comments 213

requires change detection algorithms to be embedded in the learning process.
But, the main lesson we – researchers in knowledge discovery – can learn

from the challenges that ubiquity and flooding data poses is that learning
algorithms are limited. Real world is much greater even than a network of
computers.

Knowledge discovery from data streams requires the ability of predictive
self-diagnosis. A significant and useful intelligence characteristic is diagnostics
- not only after failure has occurred, but also predictive (before failure) and
advisory (providing maintenance instructions). The development of such self-
configuring, self-optimizing, and self-repairing systems is a major scientific
and engineering challenge. All these aspects require monitoring the evolution
of the learning process, taking into account the available resources, and the
ability of reasoning and learning about it.

214 Knowledge Discovery from Data Streams

Bibliography

Abdulsalam, H., D. B. Skillicorn, and P. Martin (2007). Streaming random
forests. In Proceedings of the 11th International Database Engineering and
Applications Symposium, Washington DC, USA, pp. 225–232. IEEE Com-
puter Society.

Aggarwal, C. (2006). On biased reservoir sampling in the presence of stream
evolution. In U. Dayal, K.-Y. Whang, D. B. Lomet, G. Alonso, G. M.
Lohman, M. L. Kersten, S. K. Cha, and Y.-K. Kim (Eds.), Proceedings
International Conference on Very Large Data Bases, Seoul, Korea, pp. 607–
618. ACM.

Aggarwal, C. (Ed.) (2007). Data Streams – Models and Algorithms. Springer.

Aggarwal, C., J. Han, J. Wang, and P. Yu (2003). A framework for clustering
evolving data streams. In Proceedings of the International Conference on
Very Large Data Bases, Berlin, Germany, pp. 81–92. Morgan Kaufmann.

Aggarwal, C., J. Han, J. Wang, and P. Yu (2006). A framework for on-demand
classification of evolving data streams. IEEE Transactions on Knowledge
and Data Engineering 18 (5), 577–589.

Agrawal, R., T. Imielinski, and A. Swami (1993, May). Mining association
rules between sets of items in large databases. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, Washington
DC, USA, pp. 207–216.

Agrawal, R. and R. Srikant (1994, September). Fast algorithms for mining
association rules in large databases. In J. Bocca, M. Jarke, and C. Zaniolo
(Eds.), Proceedings of the 20th International Conference on Very Large Data
Bases, Santiago, Chile, pp. 487–499. Morgan Kaufmann.

Agrawal, R. and R. Srikant (1995). Mining sequential patterns. In P. S. Yu
and A. L. P. Chen (Eds.), International Conference on Data Engineering,
Taipei, Taiwan, pp. 3–14. IEEE Computer Society.

Agrawal, R. and R. Srikant (2000). Privacy-preserving data mining. In Pro-
ceedings of the ACM SIGMOD International Conference on Management
of Data, Dallas, USA, pp. 439–450. ACM Press.

215

216 Knowledge Discovery from Data Streams

Akaike, H. (1974). A new look at the statistical model identification. IEEE
Transactions on Automatic Control 19 (6), 716–723.

Asuncion, A. and D. Newman (2007). UCI Machine Learning repository.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Babcock, B., S. Babu, M. Datar, R. Motwani, and J. Widom (2002). Models
and issues in data stream systems. In P. G. Kolaitis (Ed.), Proceedings of
the 21nd Symposium on Principles of Database Systems, Madison, USA,
pp. 1–16. ACM Press.

Babcock, B., M. Datar, and R. Motwani (2002). Sampling from a moving
window over streaming data. In Proceedings of the Annual ACM SIAM
Symposium on Discrete Algorithms, San Francisco, USA, pp. 633–634. So-
ciety for Industrial and Applied Mathematics.

Babcock, B., M. Datar, R. Motwani, and L. O’Callaghan (2003). Maintain-
ing variance and k-medians over data stream windows. In T. Milo (Ed.),
Proceedings of the 22nd Symposium on Principles of Database Systems, San
Diego, USA, pp. 234–243. ACM Press.

Bar-Or, A., R. Wolff, A. Schuster, and D. Keren (2005). Decision tree induc-
tion in high dimensional, hierarchically distributed databases. In Proceed-
ings SIAM International Data Mining Conference, Newport Beach, USA,
pp. 466–470. SIAM Press.

Barbará, D. (2002, January). Requirements for clustering data streams.
SIGKDD Explorations 3 (2), 23–27.

Barbará, D. and P. Chen (2000). Using the fractal dimension to cluster
datasets. In Proceedings of the ACM International Conference on Knowl-
edge Discovery and Data Mining, Boston, USA, pp. 260–264. ACM Press.

Barbará, D. and P. Chen (2001). Tracking clusters in evolving data sets. In
Proceedings of the Fourteenth International Florida Artificial Intelligence
Research Society Conference, Key West, USA, pp. 239–243. AAAI Press.

Barnett, V. and T. Lewis (1995). Outliers in Statistical Data (3rd ed.). John
Wiley & Sons.

Basseville, M. and I. Nikiforov (1993). Detection of Abrupt Changes: Theory
and Applications. Prentice-Hall Inc.

Bhaduri, K. and H. Kargupta (2008). An efficient local algorithm for dis-
tributed multivariate regression in peer-to-peer networks. In Proceedings
SIAM International Conference on Data Mining, Atlanta, USA, pp. 153–
164. SIAM Press.

Bibliography 217

Bhaduri, K., R. Wolff, C. Giannella, and H. Kargupta (2008). Distributed
decision-tree induction in peer-to-peer systems. Statistical Analysis and
Data Mining 1 (2), 85–103.

Bhargava, R., H. Kargupta, and M. Powers (2003). Energy consumption in
data analysis for on-board and distributed applications. Technical report,
University Maryland.

Bhattacharyya, G. and R. Johnson (1977). Statistical Concepts and Methods.
New York, John Willey & Sons.

Bifet, A. and R. Gavaldà (2006). Kalman filters and adaptive windows for
learning in data streams. In L. Todorovski and N. Lavrac (Eds.), Proceed-
ings of the 9th Discovery Science, Volume 4265 of Lecture Notes Artificial
Intelligence, Barcelona, Spain, pp. 29–40. Springer.

Bifet, A. and R. Gavaldà (2007). Learning from time-changing data with
adaptive windowing. In Proceedings SIAM International Conference on
Data Mining, Minneapolis, USA, pp. 443–448. SIAM.

Bifet, A. and R. Gavaldà (2008). Mining adaptively frequent closed unlabeled
rooted trees in data streams. In Proceedings of the ACM International
Conference on Knowledge Discovery and Data Mining, Las Vegas, USA,
pp. 34–42.

Bifet, A. and R. Gavaldà (2009). Adaptive XML tree classification on evolving
data streams. In Machine Learning and Knowledge Discovery in Databases,
European Conference, Volume 5781 of Lecture Notes in Computer Science,
Bled, Slovenia, pp. 147–162. Springer.

Birant, D. and A. Kut (2007, January). ST-DBSCAN: An algorithm for clus-
tering spatial-temporal data. Data Knowledge Engineering 60 (1), 208–221.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford
University Press.

Bock, H. and E. Diday (2000). Analysis of symbolic data: Exploratory Methods
for Extracting Statistical Information from Complex Data. Springer.

Boulle, M. (2004). Khiops: A statistical discretization method of continuous
attributes. Machine Learning 55 (1), 53–69.

Box, G. and G. Jenkins (1976). Time series analysis: forecasting and control.
Holden-Day.

Boyd, S., A. Ghosh, B. Prabhakar, and D. Shah (2006). Randomized gossip
algorithms. IEEE Transactions on Information Theory 52 (6), 2508–2530.

218 Knowledge Discovery from Data Streams

Brain, D. and G. Webb (2002). The need for low bias algorithms in classifica-
tion learning from large data sets. In T.Elomaa, H.Mannila, and H.Toivonen
(Eds.), Principles of Data Mining and Knowledge Discovery PKDD-02, Vol-
ume 2431 of Lecture Notes in Artificial Intelligence, Helsinki, Finland, pp.
62–73. Springer.

Branch, J. W., B. K. Szymanski, C. Giannella, R. Wolff, and H. Kargupta
(2006). In-network outlier detection in wireless sensor networks. In IEEE
International Conference on Distributed Computing Systems, pp. 51–60.

Breiman, L. (1996). Bagging predictors. Machine Learning 24, 123–140.

Breiman, L. (2001). Random forests. Machine Learning 45, 5–32.

Breiman, L., J. Friedman, R. Olshen, and C. Stone (1984). Classification and
Regression Trees. Wadsworth International Group., USA.

Brigham, E. O. (1988). The fast Fourier transform and its applications. Pren-
tice Hall.

Broder, A. Z., M. Charikar, A. M. Frieze, and M. Mitzenmacher (2000).
Min-wise independent permutations. Journal of Computer and System Sci-
ences 60 (3), 630–659.

Buntine, W. (1990). A Theory of Learning Classification Rules. Ph. D. thesis,
University of Sydney.

Calvo, B., P. Larrañaga, and J. A. Lozano (2007). Learning Bayesian classifiers
from positive and unlabeled examples. Pattern Recognition Letters 28 (16),
2375–2384.

Carpenter, G., M. Rubin, and W. Streilein (1997). ARTMAP-FD: familiarity
discrimination applied to radar target recognition. In Proceedings of the
International Conference on Neural Networks, Volume III, pp. 1459–1464.

Castano, B., M. Judd, R. C. Anderson, and T. Estlin (2003). Machine learning
challenges in Mars rover traverse science. Technical report, NASA.

Castillo, G. and J. Gama (2005). Bias management of bayesian network classi-
fiers. In A. Hoffmann, H. Motoda, and T. Scheffer (Eds.), Discovery Science,
Proceedings of 8th International Conference, Volume 3735 of Lecture Notes
in Artificial Intelligence, Singapore, pp. 70–83. Springer.

Catlett, J. (1991). Megainduction: A test flight. In L. Birnbaum and G. Collins
(Eds.), Machine Learning: Proceedings of the 8th International Conference,
Illinois, USA, pp. 596–599. Morgan Kaufmann.

Cauwenberghs, G. and T. Poggio (2000). Incremental and decremental sup-
port vector machine learning. In Proceedings of the Neural Information
Processing Systems.

Bibliography 219

Cesa-Bianch, N. and G. Lugosi (2006). Prediction, Learning and Games.
Cambridge University Press.

Cesa-Bianchi, N., Y. Freund, D. P. Helmbold, and M. K. Warmuth (1996).
On-line prediction and conversion strategies. Machine Learning 25, 71–110.

Chakrabarti, A., K. D. Ba, and S. Muthukrishnan (2006). Estimating entropy
and entropy norm on data streams. In STACS: 23rd Annual Symposium on
Theoretical Aspects of Computer Science, Marseille, France, pp. 196–205.

Chakrabarti, A., G. Cormode, and A. McGregor (2007). A near-optimal algo-
rithm for computing the entropy of a stream. In Proceedings of ACM-SIAM
Symposium on Discrete Algorithms, Minneapolis, USA, pp. 328–335.

Chakrabarti, K., M. Garofalakis, R. Rastogi, and K. Shim (2001). Ap-
proximate query processing using wavelets. Very Large Data Bases Jour-
nal 10 (2–3), 199–223.

Chang, J. H. and W. S. Lee (2003). Finding recent frequent itemsets adap-
tively over online data streams. In L. Getoor, T. E. Senator, P. Domingos,
and C. Faloutsos (Eds.), Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Washington DC,
USA, pp. 487–492. ACM.

Chang, J. H. and W. S. Lee (2005). estWin: Online data stream mining of
recent frequent itemsets by sliding window method. Journal Information
Science 31 (2), 76–90.

Chen, R., K. Sivakumar, and H. Kargupta (2004). Collective mining of
Bayesian networks from heterogeneous data. Knowledge and Information
Systems Journal 6 (2), 164–187.

Cheng, J., Y. Ke, and W. Ng (2008). A survey on algorithms for mining
frequent itemsets over data streams. Knowledge and Information Sys-
tems 16 (1), 1–27.

Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothe-
sis based on the sums of observations. Annals of Mathematical Statistics 23,
493– 507.

Chi, Y., H. Wang, P. S. Yu, and R. R. Muntz (2004). Moment: Maintaining
closed frequent itemsets over a stream sliding window. In Proceedings of the
IEEE International Conference on Data Mining, Brighton, UK, pp. 59–66.
IEEE Computer Society.

Chu, F. and C. Zaniolo (2004). Fast and light boosting for adaptive mining
of data streams. In H. Dai, R. Srikant, and C. Zhang (Eds.), PAKDD,
Volume 3056 of Lecture Notes in Computer Science, Pisa, Italy, pp. 282–
292. Springer.

220 Knowledge Discovery from Data Streams

Cohen, L., G. Avrahami, M. Last, and A. Kandel (2008). Info-fuzzy algorithms
for mining dynamic data streams. Applied Soft Computing 8 (4), 1283–1294.

Cohen, P. (1995). Empirical Methods for Artificial Intelligence. MIT Press.

Cormode, G. and M. Hadjieleftheriou (2009). Finding the frequent items in
streams of data. Communications ACM 52 (10), 97–105.

Cormode, G., F. Korn, S. Muthukrishnan, and D. Srivastava (2008). Find-
ing hierarchical heavy hitters in streaming data. ACM Transactions on
Knowledge Discovery from Data 1 (4), 1–48.

Cormode, G. and S. Muthukrishnan (2003). What’s hot and what’s not: track-
ing most frequent items dynamically. In ACM Symposium on Principles of
Database Systems 2003, San Diego, USA, pp. 296–306. ACM Press.

Cormode, G. and S. Muthukrishnan (2005). An improved data stream
summary: the count-min sketch and its applications. Journal of Algo-
rithms 55 (1), 58–75.

Cormode, G., S. Muthukrishnan, and W. Zhuang (2007). Conquering the
divide: Continuous clustering of distributed data streams. In ICDE: Pro-
ceedings of the International Conference on Data Engineering, Istanbul,
Turkey, pp. 1036–1045.

Coughlan, J. (2004). Accelerating scientific discovery at NASA. In Proceed-
ings SIAM International Conference on Data Mining, Florida, USA. SIAM
Press.

Craven, M. and J. Shavlik (1997). Using neural networks for data mining.
Future Generation Computer Systems 13, 211–229.

Dai, B.-R., J.-W. Huang, and M.-Y. Yeh (2006). Adaptive clustering for
multiple evolving streams. IEEE Transactions on Knowledge and Data
Engineering 18 (9), 1166–1180.

Dasgupta, D. and S. Forrest (1996). Novelty detection in time series data using
ideas from immunology. In Proceedings of the International Conference on
Intelligent Systems, Cleveland, USA. ISCA Press.

Datar, M., A. Gionis, P. Indyk, and R. Motwani (2002). Maintaining stream
statistics over sliding windows. In Proceedings of Annual ACM-SIAM Sym-
posium on Discrete Algorithms, San Francisco, USA, pp. 635–644. Society
for Industrial and Applied Mathematics.

Dawid, A. P. (1984). Statistical theory: The prequential approach. Journal
of the Royal Statistical Society-A 147, 278–292.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data
sets. Journal of Machine Learning Research 7, 1–30.

Bibliography 221

Denis, F., R. Gilleron, and F. Letouzey (2005). Learning from positive and
unlabeled examples. Theoretical Computer Science 348 (1), 70–83.

Dietterich, T. (1996). Approximate statistical tests for comparing supervised
classification learning algorithms. Corvallis, technical report nr. 97.331,
Oregon State University.

Dietterich, T. (1997). Machine learning research: four current directions. AI
Magazine 18 (4), 97–136.

Dillon, W. and M. Goldstein (1984). Multivariate Analysis, Methods and
Applications. J. Wiley & Sons, Inc.

Dobra, A. and J. Gehrke (2002). SECRET: a scalable linear regression tree
algorithm. In ACM-SIGKDD Knowledge Discovery and Data Mining, Ed-
monton, Canada, pp. 481–487. ACM.

Domingos, P. (1998). Occam’s two razor: the sharp and the blunt. In Proceed-
ings of the 4 International Conference on Knowledge Discovery and Data
Mining, Madison, USA, pp. 37–43. AAAI Press.

Domingos, P. and G. Hulten (2000). Mining High-Speed Data Streams. In
I. Parsa, R. Ramakrishnan, and S. Stolfo (Eds.), Proceedings of the ACM
Sixth International Conference on Knowledge Discovery and Data Mining,
Boston, USA, pp. 71–80. ACM Press.

Domingos, P. and G. Hulten (2001). A general method for scaling up ma-
chine learning algorithms and its application to clustering. In C. Brodley
(Ed.), Machine Learning, Proceedings of the 18th International Conference,
Williamstown, USA, pp. 106–113. Morgan Kaufmann.

Domingos, P. and M. Pazzani (1997). On the optimality of the simple Bayesian
classifier under zero-one loss. Machine Learning 29, 103–129.

Dougherty, J., R. Kohavi, and M. Sahami (1995). Supervised and unsuper-
vised discretization of continuous features. In Proceedings 12th International
Conference on Machine Learning, Tahoe City, USA, pp. 194–202. Morgan
Kaufmann.

Elnekave, S., M. Last, and O. Maimon (2007, April). Incremental cluster-
ing of mobile objects. In International Conference on Data Engineering
Workshop, Istanbul, Turkey, pp. 585–592. IEEE Press.

Faloutsos, C., B. Seeger, A. J. M. Traina, and C. T. Jr. (2000). Spatial join
selectivity using power laws. In Proceedings ACM SIGMOD International
Conference on Management of Data, Dallas, USA, pp. 177–188.

Fan, W. (2004). Systematic data selection to mine concept-drifting data
streams. In J. Gehrke and W. DuMouchel (Eds.), Proceedings of the Tenth
International Conference on Knowledge Discovery and Data Mining, Seat-
tle, USA, pp. 128–137. ACM Press.

222 Knowledge Discovery from Data Streams

Fan, W., Y. Huang, H. Wang, and P. S. Yu (2004). Active mining of data
streams. In Proceedings of the SIAM International Conference on Data
Mining, Florida, USA, pp. 457–460. SIAM.

Fang, M., N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman
(1998). Computing iceberg queries efficiently. In Proceedings of the Interna-
tional Conference on Very Large Data Bases, New York, USA, pp. 299–310.
Morgan Kaufmann.

Farnstrom, F., J. Lewis, and C. Elkan (2000). Scalability for clustering algo-
rithms revisited. SIGKDD Explorations 2 (1), 51–57.

Fayyad, U. and K. Irani (1993). Multi-interval discretization of continuous-
valued attributes for classification learning. In 13th International Joint Con-
ference of Artificial Intelligence, Chambéry, France, pp. 1022–1029. Morgan
Kaufmann.

Fern, A. and R. Givan (2000). Online ensemble learning: An empirical study.
In P. Langley (Ed.), Machine Learning, Proceedings of the 17th Interna-
tional Conference, Stanford, USA, pp. 279–186. Morgan Kaufmann.

Ferrer-Troyano, F., J. Aguilar-Ruiz, and J. Riquelme (2005). Incremental
rule learning and border examples selection from numerical data streams.
Journal of Universal Computer Science 11 (8), 1426–1439.

Ferrer-Troyano, F., J. S. Aguilar-Ruiz, and J. C. Riquelme (2004). Discovering
decision rules from numerical data streams. In Proceedings of the ACM
Symposium on Applied Computing, Nicosia, Cyprus, pp. 649–653. ACM
Press.

Ferrer-Troyano, F. J., J. S. Aguilar-Ruiz, and J. C. Riquelme (2006). Data
streams classification by incremental rule learning with parameterized gen-
eralization. In Proceedings of the ACM Symposium on Applied Computing,
Dijon, France, pp. 657–661. ACM.

Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clus-
tering. Machine Learning 2, 139–172.

Flajolet, P. and G. N. Martin (1985). Probabilistic counting algorithms for
data base applications. Journal of Computer and System Sciences 31 (2),
182–209.

Freedman, D. and P. Diaconis (1981). On the histogram as a density estimator:
l2 theory. Probability Theory 57 (4), 453–476.

Friedman, J. (1999). Greedy function approximation: a gradient boosting
machine. Technical report, Statistics Department, Stanford University.

Fürnkranz, J. (2002). Round Robin Classification. Journal of Machine Learn-
ing Research 2, 721–747.

Bibliography 223

Fürnkranz, J. and P. A. Flach (2005). Roc ’n’ rule learning-towards a better
understanding of covering algorithms. Machine Learning 58 (1), 39–77.

Gaber, M. and P. Yu (2007). A holistic approach for resource-aware adaptive
data stream mining. New Generation Computing 25 (1), 95–115.

Gaber, M., A. Zaslavsky, and S. Krishnaswamy (2005). Mining data streams:
A review. SIGMOD Record 34 (2), 18–26.

Gaber, M. M., A. B. Zaslavsky, and S. Krishnaswamy (2004). Towards an
adaptive approach for mining data streams in resource constrained environ-
ments. In International Conference on Data Warehousing and Knowledge
Discovery, Volume 3181 of Lecture Notes in Computer Science, Zaragoza,
Spain, pp. 189–198. Springer.

Gama, J., R. Fernandes, and R. Rocha (2006). Decision trees for mining data
streams. Intelligent Data Analysis 10 (1), 23–46.

Gama, J. and M. Gaber (2007). Learning from Data Streams – Processing
Techniques in Sensor Networks. Springer.

Gama, J. and P. Medas (2005). Learning decision trees from dynamic data
streams. Journal of Universal Computer Science 11 (8), 1353–1366.

Gama, J., P. Medas, G. Castillo, and P. Rodrigues (2004, October). Learning
with drift detection. In A. L. C. Bazzan and S. Labidi (Eds.), Advances
in Artificial Intelligence - SBIA 2004, Volume 3171 of Lecture Notes in
Computer Science, São Luis, Brasil, pp. 286–295. Springer.

Gama, J., P. Medas, and R. Rocha (2004). Forest trees for on-line data. In Pro-
ceedings of the ACM Symposium on Applied Computing, Nicosia, Cyprus,
pp. 632–636. ACM Press.

Gama, J. and C. Pinto (2006). Discretization from data streams: applications
to histograms and data mining. In ACM Symposium on Applied Computing,
Dijon, France, pp. 662–667. ACM Press.

Gama, J., R. Rocha, and P. Medas (2003). Accurate decision trees for mining
high-speed data streams. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Washington DC,
USA, pp. 523–528. ACM Press.

Gama, J. and P. P. Rodrigues (2007). Stream-based electricity load forecast.
In Proceedings of the European Conference on Principles and Practice of
Knowledge Discovery in Databases, Volume 4702 of Lecture Notes in Com-
puter Science, Warsow, Poland, pp. 446–453. Springer.

Ganti, V., J. Gehrke, and R. Ramakrishnan (2002). Mining data streams
under block evolution. SIGKDD Explorations 3 (2), 1–10.

224 Knowledge Discovery from Data Streams

Gao, J., W. Fan, J. Han, and P. S. Yu (2007). A general framework for
mining concept-drifting data streams with skewed distributions. In SIAM
International Conference on Data Mining, Minneapolis, USA, pp. 3–14.
SIAM.

Gehrke, J., V. Ganti, R. Ramakrishnan, and W.-Y. Loh (1999). BOAT-
Optimistic Decision Tree Construction. In Proceedings ACM SIGMOD In-
ternational Conference on Management of Data, Philadelphia, USA, pp.
169–180. ACM.

Gehrke, J., R. Ramakrishnan, and V. Ganti (2000). Rainforest - a framework
for fast decision tree construction of large datasets. Data Mining Knowledge
Discovery 4 (2/3), 127–162.

Geurts, P. (2001). Dual perturb and combine algorithm. In Proceedings of the
8th International Workshop on Artificial Intelligence and Statistics, Key
West, USA, pp. 196–201. Springer Verlag.

Ghosh, B. and P. Sen (1991). Handbook of Sequential Analysis. Narcel Dekker.

Giannella, C., J. Han, J. Pei, X. Yan, and P. Yu (2004). Mining frequent
patterns in data streams at multiple time granularities. In H. Kargupta,
A. Joshi, K. Sivakumar, and Y. Yesha (Eds.), Data Mining: Next Generation
Challenges and Future Directions, pp. 105–124. AAAI/MIT Press.

Gibbons, P. B., Y. Matias, and V. Poosala (1997). Fast incremental mainte-
nance of approximate histograms. In Proceedings of Very Large Data Bases,
Athens, Greece, pp. 466–475. Morgan Kaufmann.

Gonzalez, T. F. (1985). Clustering to minimize the maximum intercluster
distance. Theoretical Computer Science 38 (2/3), 293–306.

Granger, C. W. J. and P. Newbold (1976). The use of r2 to determine the
appropriate transformation of regression variables. J. Econometrics 4, 205–
210.

Grant, E. and R. Leavenworth (1996). Statistical Quality Control. McGraw-
Hill.

Gratch, J. (1996). Sequential inductive learning. In Proceedings of 13th Na-
tional Conference on Artificial Intelligence, Volume 1, Portland, USA, pp.
779–786. AAAI Press.

Grünwald, P. (2007). The Minimum Description Length Principle. MIT Press.

Guh, R., F. Zorriassatine, and J. Tannock (1999). On-line control chart pat-
tern detection and discrimination - a neural network approach. Artificial
Intelligence Engeneering 13, 413–425.

Bibliography 225

Guha, S. and B. Harb (2005). Wavelet synopsis for data streams: minimizing
non-euclidean error. In Proceeding of the 11th ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining, New York, USA, pp.
88–97. ACM Press.

Guha, S., A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan (2003).
Clustering data streams: Theory and practice. IEEE Transactions on
Knowledge and Data Engineering 15 (3), 515–528.

Guha, S., R. Rastogi, and K. Shim (1998). Cure: an efficient clustering al-
gorithm for large databases. In Proceedings ACM SIGMOD International
Conference on Management of Data, Seattle, USA, pp. 73–84. ACM Press.

Guha, S., K. Shim, and J. Woo (2004). REHIST: Relative error histogram
construction algorithms. In Proceedings of the 30th International Confer-
ence on Very Large Data Bases, Toronto, Canada, pp. 288–299. Morgan
Kaufmann.

Han, J. and M. Kamber (2006). Data Mining Concepts and Techniques. Mor-
gan Kaufmann.

Han, J., J. Pei, Y. Yin, and R. Mao (2004). Mining frequent patterns without
candidate generation. Data Mining and Knowledge Discovery 8, 53–87.

Hand, D. J. and R. J. Till (2001). A simple generalisation of the area under the
roc curve for multiple class classification problems. Machine Learning 45,
171–186.

Hansen, L. and P. Salamon (1990). Neural networks ensembles. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 12 (10), 993–1001.

Harries, M., C. Sammut, and K. Horn (1998). Extracting hidden context.
Machine Learning 32, 101–126.

Harvey, A. (1990). Forecasting, Structural Time Series Models and the Kalman
Filter. Cambridge University Press.

Hastie, T., R. Tibshirani, and J. Friedman (2000). The Elements of Statistical
Learning, Data Mining, Inference and Prediction. Springer.

Herbster, M. and M. Warmuth (1995). Tracking the best expert. In A. Priedi-
tis and S. Russel (Eds.), Machine Learning, Proceedings of the 12th Inter-
national Conference, Tahoe City, USA, pp. 286–294. Morgan Kaufmann.

Herbster, M. and W. Warmuth (1998). Tracking the best expert. Machine
Learning 32, 151–178.

Hinneburg, A. and D. A. Keim (1999). Optimal grid-clustering: Towards
breaking the curse of dimensionality in high-dimensional clustering. In Pro-
ceedings of the International Conference on Very Large Data Bases, Edin-
burgh, Scotland, pp. 506–517. Morgan Kaufmann.

226 Knowledge Discovery from Data Streams

Hippert, H. S., C. E. Pedreira, and R. C. Souza (2001). Neural networks for
short-term load forecasting: a review and evaluation. IEEE Transactions
on Power Systems 16 (1), 44–55.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association 58 (301), 13–30.

Hoeting, J. A., D. Madigan, A. E. Raftery, and C. T. Volinsky (1999). Bayesian
model averaging: A tutorial. Statistical Science 14 (1), 382–401.

Holmes, G., R. Kirkby, and B. Pfahringer (2007). MOA: Mas-
sive Online Analysis. Technical report, University of Waikato.
http://sourceforge.net/projects/∼moa-datastream.

Hu, X.-G., P. pei Li, X.-D. Wu, and G.-Q. Wu (2007). A semi-random multi-
ple decision-tree algorithm for mining data streams. J. Computer Science
Technology 22 (5), 711–724.

Hulten, G. and P. Domingos (2001). Catching up with the data: research
issues in mining data streams. In Proc. of Workshop on Research Issues in
Data Mining and Knowledge Discovery, Santa Barbara, USA.

Hulten, G. and P. Domingos (2003). VFML – a toolkit for mining high-speed
time-changing data streams. Technical report, University of Washington.
http://www.cs.washington.edu/dm/vfml/.

Hulten, G., L. Spencer, and P. Domingos (2001). Mining time-changing data
streams. In Proceedings of the 7th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, California, pp.
97–106. ACM Press.

Ikonomovska, E. and J. Gama (2008). Learning model trees from data streams.
In J.-F. Boulicaut, M. R. Berthold, and T. Horváth (Eds.), Discovery Sci-
ence, Volume 5255 of Lecture Notes in Computer Science, Budapest, Hun-
gary, pp. 52–63. Springer.

Ikonomovska, E., J. Gama, R. Sebastião, and D. Gjorgjevik (2009). Regression
trees from data streams with drift detection. In Discovery Science, Volume
5808 of Lecture Notes in Computer Science, Porto, Portugal, pp. 121–135.
Springer.

Japkowicz, N., C. Myers, and M. Gluck (1995). A novelty detection approach
to classification. In In Proceedings of the 14th Joint Conference on Artificial
Intelligence, Montréal, Canada, pp. 518–523. Morgan Kaufmann.

Jawerth, B. and W. Sweldens (1994). An overview of wavelet based multires-
olution analyses. SIAM Review 36 (3), 377–412.

Bibliography 227

Jin, R. and G. Agrawal (2003). Efficient decision tree construction on stream-
ing data. In P. Domingos and C. Faloutsos (Eds.), Proceedings of the Inter-
national Conference on Knowledge Discovery and Data Mining, Washington
DC, USA, pp. 571–576. ACM Press.

Jin, R. and G. Agrawal (2007). Data streams – models and algorithms. See
Aggarwal (2007), Chapter Frequent Pattern Mining in Data Streams, pp.
61–84.

Kalles, D. and T. Morris (1996). Efficient incremental induction of decision
trees. Machine Learning 24, 231–242.

Kalman, R. (1960). A new approach to linear filtering and prediction prob-
lems. Journal of Basic Engineering 82 (1), 35–45.

Kargupta, H., B. Park, S. Pittie, L. Liu, D. Kushraj, and K. Sarkar (2002).
Mobimine: Monitoring the stock market from a PDA. ACM SIGKDD Ex-
plorations 3 (2), 37–46.

Kargupta, H. and B.-H. Park (2001). Mining decision trees from data streams
in a mobile environment. In IEEE International Conference on Data Min-
ing, San Jose, USA, pp. 281–288. IEEE Computer Society.

Kargupta, H., V. Puttagunta, M. Klein, and K. Sarkar (2007). On-board
vehicle data stream monitoring using minefleet and fast resource constrained
monitoring of correlation matrices. New Generation Computing 25 (1), 5–
32.

Karp, R., S. Shenker, and C. Papadimitriou (2003, March). A simple algorithm
for finding frequent elements in streams and bags. ACM Transactions on
Database Systems 28 (1), 51–55.

Kaski, S. and T. Kohonen (1994). Winner-take-all networks for physiological
models of competitive learning. Neural Networks 7 (6-7), 973–984.

Kearns, M., Y. Mansour, A. Y. Ng, and D. Ron (1997). An experimental and
theoretical comparison of model selection methods. Machine Learning 27,
7–50.

Keogh, E., S. Lonardi, and B. Y. Chiu (2002). Finding surprising patterns
in a time series database in linear time and space. In Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Edmonton, Canada, pp. 550–556. ACM Press.

Keogh, E. J., J. Lin, and A. W.-C. Fu (2005). HOT SAX: Efficiently finding the
most unusual time series subsequence. In Proceedings of the International
Conference on Data Mining, Houston, USA, pp. 226–233. IEEE Press.

228 Knowledge Discovery from Data Streams

Keogh, E. J., J. Lin, and W. Truppel (2003). Clustering of the time series sub-
sequences is meaningless: Implications for previous and future research. In
Proceedings of the IEEE International Conference on Data Mining, Florida,
USA, pp. 115–122. IEEE Computer Society.

Kerber, R. (1992). Chimerge: discretization of numeric attributes. In Pro-
ceedings of the 10th National Conference on Artificial Intelligence, San Jose,
USA, pp. 388–391. MIT Press.

Khotanzad, A., R. Afkhami-Rohani, T.-L. Lu, A. Abaye, M. Davis, and D. J.
Maratukulam (1997, July). ANNSTLF: A neural-network-based electric
load forecasting system. IEEE Transactions on Neural Networks 8 (4), 835–
846.

Kifer, D., S. Ben-David, and J. Gehrke (2004). Detecting change in data
streams. In Proceedings of the International Conference on Very Large
Data Bases, Toronto, Canada, pp. 180–191. Morgan Kaufmann.

King, S., D. King, P. Anuzis, K. Astley, L. Tarassenko, P. Hayton, and S. Utete
(2002). The use of novelty detection techniques for monitoring high-integrity
plant. In Proceedings of International Conference on Control Applications,
Volume 1, pp. 221–226.

Kirkby, R. (2008). Improving Hoeffding Trees. Ph. D. thesis, University of
Waikato - New Zealand.

Kleinberg, J. (2004). Bursty and hierarchical structure in streams. Data
Mining and Knowledge Discovery 7 (4), 373–397.

Klinkenberg, R. (2004). Learning drifting concepts: Example selection vs.
example weighting. Intelligent Data Analysis 8 (3), 281–300.

Klinkenberg, R. and T. Joachims (2000). Detecting concept drift with sup-
port vector machines. In P. Langley (Ed.), Proceedings of the 17th Inter-
national Conference on Machine Learning, Stanford, USA, pp. 487–494.
Morgan Kaufmann.

Klinkenberg, R. and I. Renz (1998). Adaptive information filtering: Learning
in the presence of concept drifts. In AAAI Workshop on Learning for Text
Categorization, Madison, USA, pp. 33–40. AAAI Press.

Kohavi, R. and C. Kunz (1997). Option decision trees with majority votes. In
D. Fisher (Ed.), Machine Learning Proc. of 14th International Conference.
Morgan Kaufmann.

Kolter, J. and M. Maloof (2005). Using additive expert ensembles to cope
with concept drift. In L. Raedt and S. Wrobel (Eds.), Machine Learning,
Proceedings of the 22th International Conference, Bonn, Germany, pp. 449
–456. OmniPress.

Bibliography 229

Kolter, J. Z. and M. A. Maloof (2003). Dynamic weighted majority: A new
ensemble method for tracking concept drift. In Proceedings of the 3th In-
ternational IEEE Conference on Data Mining, Florida, USA, pp. 123–130.
IEEE Computer Society.

Kolter, J. Z. and M. A. Maloof (2007). Dynamic weighted majority: An ensem-
ble method for drifting concepts. Jounal of Machine Learning Research 8,
2755–2790.

Koychev, I. (2000). Gradual forgetting for adaptation to concept drift. In Pro-
ceedings of ECAI Workshop Current Issues in Spatio-Temporal Reasoning,
Berlin, Germany, pp. 101–106. ECAI Press.

Koychev, I. (2002). Tracking changing user interests through prior-learning of
context. In Proceedings of the Second International Conference on Adaptive
Hypermedia and Adaptive Web-Based Systems, London, UK, pp. 223–232.
Springer.

Kuh, A., T. Petsche, and R. L. Rivest (1990). Learning time-varying concepts.
In Neural Information Processing Systems, pp. 183–189.

Lanquillon, C. (2001). Enhancing Text Classification to Improve Information
Filtering. Ph. D. thesis, University of Madgdeburg, Germany.

Last, M. (2002). On-line classification of non-stationary data streams. Intel-
ligent Data Analysis 6 (2), 129–147.

Lazarescu, M., S. Venkatesh, and H. Bui (2004). Using multiple windows to
track concept drift. Intelligent Data Analysis 8 (1), 29–60.

Lee, H. K. H. and M. A. Clyde (2004). Lossless online bayesian bagging.
Journal of Machine Learning Research 5, 143–151.

Leonardi, S., J. Lin, E. Keogh, and B. Chiu (2007). Efficient discovery of
unsual patterns in time series. New Generation Computing 25 (1), 61–116.

Leydesdorff, L. (2005). Similarity measures, author cocitation analysis, and
information theory. Journal of the American Society for Information Sci-
ence and Technology 56 (7), 769–772.

Li, C., Y. Zhang, and X. Li (2009). OcVFDT: one-class very fast decision
tree for one-class classification of data streams. In O. A. Omitaomu, A. R.
Ganguly, J. Gama, R. R. Vatsavai, N. V. Chawla, and M. M. Gaber (Eds.),
KDD Workshop on Knowledge Discovery from Sensor Data, Paris, France,
pp. 79–86. ACM.

Li, H.-F., M.-K. Shan, and S.-Y. Lee (2008). DSM-FI: an efficient algorithm
for mining frequent itemsets in data streams. Knowledge and Information
Systems 17 (1), 79–97.

230 Knowledge Discovery from Data Streams

Lin, J., E. Keogh, and S. Lonardi (2004). Visualizing and discovering non-
trivial patterns in large time series databases. Information Visualiza-
tion 4 (2), 61–82.

Lin, J., E. Keogh, S. Lonardi, and B. Chiu (2003). A symbolic representation
of time series, with implications for streaming algorithms. In Proceedings
of the ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, Washington DC, USA, pp. 2–11. ACM Press.

Lin, J., E. J. Keogh, S. Lonardi, J. P. Lankford, and D. M. Nystrom (2004).
Viztree: a tool for visually mining and monitoring massive time series
databases. In Proceedings of the Very Large Data Bases Conference,
Toronto, Canada, pp. 1269–1272. Morgan Kaufmann.

Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: A
new linear-threshold algorithm. Machine Learning 2, 285–318.

Littlestone, N. and M. K. Warmuth (1994). The weighted majority algorithm.
Information and Computation 108 (2), 212–261.

Liu, B., Y. Dai, X. Li, W. S. Lee, and P. S. Yu (2003). Building text classifiers
using positive and unlabeled examples. In Proceedings of the International
Conference Data Mining, Florida, USA, pp. 179–188. IEEE Computer So-
ciety.

Loh, W. and Y. Shih (1997). Split selection methods for classification trees.
Statistica Sinica 7, 815–840.

Maloof, M. and R. Michalski (2000). Selecting examples for partial memory
learning. Machine Learning 41, 27–52.

Manku, G. S. and R. Motwani (2002). Approximate frequency counts over
data streams. In Proceedings of 28th International Conference on Very
Large Data Bases, Hong Kong, pp. 346–357. Morgan Kaufmann.

Marascu, A. and F. Masseglia (2006). Mining sequential patterns from
data streams: a centroid approach. Journal Intelligent Information Sys-
tems 27 (3), 291–307.

Marascu, A. and F. Masseglia (2009). Parameterless outlier detection in data
streams. In Proceedings of the 2009 ACM Symposium on Applied Comput-
ing, Honolulu, USA, pp. 1491–1495.

Markou, M. and S. Singh (2003). Novelty detection: A review - part 1: Sta-
tistical approaches. Signal Processing 83 (12), 2481–2497.

Marsland, S. (2003). Novelty detection in learning systems. Neural Computing
Surveys 3, 157–195.

Bibliography 231

Masseglia, F., P. Poncelet, and M. Teisseire (2003). Incremental mining of
sequential patterns in large databases. Data Knowledge Engineering 46 (1),
97–121.

Matias, Y., J. S. Vitter, and M. Wang (1998). Wavelet-based histograms for
selectivity estimation. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, New York, NY, USA, pp. 448–459.
ACM Press.

Mehta, M., R. Agrawal, and J. Rissanen (1996). Sliq: A fast scalable classifier
for data mining. In Proceedings International Conference on Extending
Database Technology, Volume 1057 of Lecture Notes in Computer Science,
Avignon, France, pp. 18–32. Springer.

Metwally, A., D. Agrawal, and A. E. Abbadi (2005). Efficient computation of
frequent and top-k elements in data streams. In 10th International Confer-
ence Database Theory - ICDT, Volume 3363 of Lecture Notes in Computer
Science, Edinburgh, UK, pp. 398–412. Springer.

Mierswa, I., M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler (2006, Au-
gust). Yale: Rapid prototyping for complex data mining tasks. In L. Ungar,
M. Craven, D. Gunopulos, and T. Eliassi-Rad (Eds.), Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, New York, NY, USA, pp. 935–940. ACM.

Misra, J. and D. Gries (1982). Finding repeated elements. Technical report,
Cornell University, Ithaca, NY, USA.

Mitchell, T. (1997). Machine Learning. MacGraw-Hill Companies, Inc.

Motwani, R. and P. Raghavan (1997). Randomized Algorithms. Cambridge
University Press.

Mouss, H., D. Mouss, N. Mouss, and L. Sefouhi (2004). Test of Page-Hinkley,
an approach for fault detection in an agro-alimentary production system.
In Proceedings of the Asian Control Conference, Volume 2, pp. 815–818.

Muthukrishnan, S. (2005). Data Streams: Algorithms and Applications. Now
Publishers.

Oza, N. (2001). Online Ensemble Learning. Ph. D. thesis, University of
California, Berkeley.

Page, E. S. (1954). Continuous inspection schemes. Biometrika 41 (1/2),
100–115.

Pang, K. P. and K. M. Ting (2004). Improving the centered CUSUMS statistic
for structural break detection in time series. In G. I. Webb and X. Yu (Eds.),
AI 2004: Advances in Artificial Intelligence: 17th Australian Joint Confer-
ence on Artificial Intelligence, Volume 3339 of Lecture Notes in Computer
Science, pp. 402–413. Springer.

232 Knowledge Discovery from Data Streams

Park, B.-H. and H. Kargupta (2002). Data mining handbook. In N. Ye (Ed.),
Data Mining Handbook, Chapter Distributed Data Mining: Algorithms, Sys-
tems, and Applications, pp. 341–358. Lawrence Erlbaum Associates.

Park, N. H. and W. S. Lee (2004). Statistical grid-based clustering over data
streams. SIGMOD Record 33 (1), 32–37.

Patel, P., E. Keogh, J. Lin, and S. Lonardi (2002). Mining motifs in massive
time series databases. In Proceedings of IEEE International Conference on
Data Mining, Maebashi City, Japan, pp. 370–377. IEEE Computer Society.

Pearson, K. (1896). Regression, heredity and panmixia. Philosophical Trans-
actions of the Royal Society 187, 253–318.

Pei, J., J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu
(2001). Prefixspan: Mining sequential patterns by prefix-projected growth.
In Proceedings of the 17th International Conference on Data Engineering,
Heidelberg, Germany, pp. 215–224. IEEE Computer Society.

Peter Kriegel, H., P. Kröger, and I. Gotlibovich (2003). Incremental optics:
Efficient computation of updates in a hierarchical cluster ordering. In In-
ternational Conference on Data Warehousing and Knowledge Discovery,
Lecture Notes Computer Science, Prague, Czech Republic, pp. 224–233.
Springer.

Pinto, C. and J. Gama (2007). Incremental discretization, application to
data with concept drift. In ACM Symposium on Applied Computing, Seoul,
Korea, pp. 467–468. ACM Press.

Polikar, R., L. Udpa, S. Udpa, and V. Honavar (2001). Learn++: An incremen-
tal learning algorithm for supervised neural networks. IEEE Transactions
on Systems, Man, and Cybernetics 31, 497–508.

Potts, D. and C. Sammut (2005). Incremental learning of linear model trees.
Machine Learning 61 (1-3), 5–48.

Pratt, K. B. and G. Tschapek (2003). Visualizing concept drift. In Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Washington DC, USA, pp. 735–740. ACM Press.

Quinlan, R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, Inc. San Mateo, CA.

Raissi, C. and P. Poncelet (2007). Sampling for sequential pattern mining:
From static databases to data streams. In Proceedings of the 7th Interna-
tional Conference on Data Mining, Omaha, USA, pp. 631–636. IEEE Press.

Raissi, C., P. Poncelet, and M. Teisseire (2007, February). Towards a new
approach for mining maximal frequent itemsets over data stream. Journal
of Intelligent Information Systems 8 (1), 23–36.

Bibliography 233

Ramakrishnan, R. and J. Gehrke (2003). Database Management Systems.
McGraw-Hill.

Rodrigues, P. P., J. Gama, and L. M. B. Lopes (2008). Clustering distributed
sensor data streams. In European Conference on Machine Learning and
Knowledge Discovery in Databases, Volume 5212 of Lecture Notes in Com-
puter Science, Antwerp, Belgium, pp. 282–297. Springer.

Rodrigues, P. P., J. Gama, and J. P. Pedroso (2008). Hierarchical clustering
of time series data streams. IEEE Transactions on Knowledge and Data
Engineering 20 (5), 615–627.

Salvador, S. and P. Chan (2007). FastDTW: Toward accurate dynamic time
warping in linear time and space. Intelligent Data Analysis 11 (5), 561–580.

Salzberg, S. (1997). On comparing classifiers: Pitfalls to avoid and a recom-
mended approach. Data Mining and Knowledge Discovery 1 (1), 317–327.

Saunders, R. and K. Grace (2008). Towards a computational model of creative
cultures. In AAAI Spring Symposium on Creative Intelligent Systems, pp.
26–28.

Schaffer, C. (1993). Selecting a classification method by cross-validation. Ma-
chine Learning 13, 135–143.

Schapire, R. (1990). The strength of weak learnability. Machine Learning 5,
197–227.

Schlimmer, J. C. and R. H. Granger (1986). Incremental learning from noisy
data. Machine Learning 1, 317–354.

Scholz, M. and R. Klinkenberg (2007). Boosting classifiers for drifting con-
cepts. Intelligent Data Analysis 11 (1), 3–28.

Schön, T., A. Eidehall, and F. Gustafsson (2005, December). Lane departure
detection for improved road geometry estimation. Technical Report LiTH-
ISY-R-2714, Department of Electrical Engineering, Linköping University,
SE-581 83 Linköping, Sweden.

Schroeder, M. (1991). Fractal, Chaos, Power Laws: Minutes from an Infinite
Paradise. W. H. Freeman and Company.

Schuster, A., R. Wolff, and D. Trock (2005). A high-performance distributed
algorithm for mining association rules. Knowledge and Information Sys-
tems 7 (4), 458–475.

Scott, D. (1979). On optimal and data base histograms. Biometrika 66,
605–610.

234 Knowledge Discovery from Data Streams

Sebastião, R. and J. Gama (2007). Change detection in learning histograms
from data streams. In Progress in Artificial Intelligence, Portuguese Confer-
ence on Artificial Intelligence, Volume 4874 of Lecture Notes in Computer
Science, Guimarães, Portugal, pp. 112–123. Springer.

Severo, M. and J. Gama (2006). Change detection with Kalman filter and
Cusum. In Discovery Science, Volume 4265 of Lecture Notes in Computer
Science, Barcelona, Spain, pp. 243–254. Springer.

Shafer, J., R. Agrawal, and M. Mehta (1996). Sprint: A scalable parallel
classifier for data mining. In Proceedings of the International Conference
on Very Large Data Bases, Bombay, India, pp. 544–555. Morgan Kaufmann.

Shahabi, C., X. Tian, and W. Zhao (2000). Tsa-tree: a wavelet-based approach
to improve the efficiency of multi-level surprise and trend queries on time-
series data. In Proceedings of the 12th International Conference on Scientific
and Statistical Database Management, pp. 55–68.

Sharfman, I., A. Schuster, and D. Keren (2007). A geometric approach to
monitoring threshold functions over distributed data streams. ACM Trans-
actions Database Systems 32 (4), 301–312.

Sheikholeslami, G., S. Chatterjee, and A. Zhang (1998). WaveCluster: A
multi-resolution clustering approach for very large spatial databases. In
Proceedings of the 24rd International Conference on Very Large Data Bases,
San Francisco, CA, USA, pp. 428–439. Morgan Kaufmann.

Shewhart, W. (1931). Economic control of quality of manufactured product.
D. Van Nostrand Company.

Simon, H. (1997). Models of Bounded Rationality. MIT Press.

Sousa, E., A. Traina, J. C. Traina, and C. Faloutsos (2007). Evaluating the
intrinsic dimension of evolving data streams. New Generation Comput-
ing 25 (1), 33–60.

Spath, H. (1980). Cluster Analysis Algorithms for Data Reduction and Clas-
sification. Ellis Horwood.

Spiliopoulou, M., I. Ntoutsi, Y. Theodoridis, and R. Schult (2006). Monic:
modeling and monitoring cluster transitions. In Proceedings ACM Interna-
tional Conference on Knowledge Discovery and Data Mining, Philadelphia,
USA, pp. 706–711. ACM Press.

Spinosa, E., J. Gama, and A. Carvalho (2008). Cluster-based novel concept de-
tection in data streams applied to intrusion detection in computer networks.
In Proceedings of the ACM Symposium on Applied Computing, Fortaleza,
Brasil, pp. 976–980. ACM Press.

Bibliography 235

Spinosa, E. J., A. C. P. de Leon Ferreira de Carvalho, and J. Gama (2009).
Novelty detection with application to data streams. Intelligent Data Anal-
ysis 13 (3), 405–422.

Srivastava, A. and J. Stroeve (2003). Onboard detection of snow, ice, clouds
and other geophysical processes using kernel methods. Technical report,
Research Institute for Advanced Computer Science, NASA Ames Research
Center.

Stibor, T., J. Timmis, and C. Eckert (2006). On the use of hyperspheres in
artificial immune systems as antibody recognition regions. In International
Conference on Artificial Immune Systems, Volume 4163 of Lecture Notes in
Computer Science, pp. 215–228. Springer.

Street, W. N. and Y. Kim (2001). A streaming ensemble algorithm SEA for
large-scale classification. In Proceedings 7th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, Cal-
ifornia, pp. 377–382. ACM Press.

Tanner, S., S. Graves, M. Alshayeb, E. Criswell, A. McDowell, M. McEniry,
and K. Regner (2003). Eve: On-board process planning and execution. In
Earth Science Technology Conference. NASA.

Tatbul, N., U. Cetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker
(2003). Load shedding in a data stream manager. In Proceedings of the
International Conference on Very Large Data Bases, Berlin, Germany, pp.
309–320. VLDB Endowment.

Tax, D. M. J. (2001). One-Class Classification - Concept-Learning in the
Absence of Counter-Examples. Ph. D. thesis, Delf University of Technology,
Faculty of Information Technology and Systems.

Toivonen, H. (1996). Sampling large databases for association rules. In T. M.
Vijayaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda (Eds.), Proceed-
ings International Conference on Very Large Data Bases, Bombay, India,
pp. 134–145. Morgan Kaufmann.

Utgoff, P., N. Berkman, and J. Clouse (1997). Decision tree induction based
on efficient tree restructuring. Machine Learning 29, 5–44.

Valiant, L. G. (1984). A theory of the learnable. Communications of
ACM 27 (11), 1134–1142.

Van de Velde, W. (1990). Incremental induction of topologically minimal trees.
In B. Porter and R. Mooney (Eds.), Machine Learning, Proceedings of the
International Conference, Austin, USA, pp. 66–74. Morgan Kaufmann.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer.

236 Knowledge Discovery from Data Streams

Vitter, J. S. (1985). Random sampling with a reservoir. ACM Transactions
on Mathematical Software 11 (1), 37–57.

Vlachos, M., K. Wu, S. Chen, and P. S. Yu (2005). Fast burst correlation of
financial data. In Proceedings of the 9th European Conference on Principles
and Practice of Knowledge Discovery in Databases, Volume 3721 of Lecture
Notes in Computer Science, pp. 368–379. Springer.

Wagner, A. and B. Plattner (2005). Entropy based worm and anomaly de-
tection in fast IP networks. In WETICE ’05: Proceedings of the IEEE
International Workshops on Enabling Technologies: Infrastructure for Col-
laborative Enterprise, Washington, DC, USA, pp. 172–177. IEEE Computer
Society.

Wald, A. (1947). Sequential Analysis. John Wiley and Sons, Inc.

Wang, H., W. Fan, P. S. Yu, and J. Han (2003). Mining concept-drifting data
streams using ensemble classifiers. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Wash-
ington, D.C., pp. 226–235. ACM Press.

Wang, M. and X. S. Wang (2003). Efficient evaluation of composite corre-
lations for streaming time series. In Advances in Web-Age Information
Management - WAIM 2003, Volume 2762 of Lecture Notes in Computer
Science, Chengdu, China, pp. 369–380. Springer.

Wang, W. and J. Yang (2005). Mining Sequential Patterns from Large Data
Sets. Springer.

Wang, W., J. Yang, and R. R. Muntz (1997). STING: A statistical infor-
mation grid approach to spatial data mining. In M. Jarke, M. J. Carey,
K. R. Dittrich, F. H. Lochovsky, P. Loucopoulos, and M. A. Jeusfeld (Eds.),
Proceedings International Conference on Very Large Data Bases, Athens,
Greece, pp. 186–195. Morgan Kaufmann.

Widmer, G. and M. Kubat (1996). Learning in the presence of concept drift
and hidden contexts. Machine Learning 23, 69–101.

Wolff, R., K. Bhaduri, and H. Kargupta (2006). Local L2-thresholding based
data mining in peer-to-peer systems. In Proceedings SIAM International
Conference on Data Mining, Maryland, USA, pp. 430–441. SIAM Press.

Wolff, R., K. Bhaduri, and H. Kargupta (2009). A generic local algorithm for
mining data streams in large distributed systems. IEEE Transactions on
Knowledge Data Engineering 21 (4), 465–478.

Wu, K., S. Chen, and P. S. Yu (2004). Interval query indexing for efficient
stream processing. In Proceedings of the ACM International Conference
on Information and Knowledge Management, Washington DC, USA, pp.
88–97. ACM Press.

Bibliography 237

Yang, Y. (2003, July). Discretization for Naive-Bayes Learning. Ph. D. thesis,
School of Computer Science and Software Engineering of Monash University.

Yang, Y., J. Zhang, J. Carbonell, and C. Jin (2002). Topic-conditioned novelty
detection. In Proceedings of the 8th International Conference on Knowledge
Discovery and Data Mining, Edmonton, Canada, pp. 688–693. ACM Press.

Zaki, M. J. (2000, May/June). Scalable algorithms for association mining.
IEEE Transactions on Knowledge and Data Engineering 12 (3), 372–390.

Zeira, G., O. Maimon, M. Last, and L. Rokach (2004). Data mining in time
series databases. In M. Last, A. Kandel, and H. Bunke (Eds.), Data Min-
ing in Time Series Databases, Volume 57, Chapter Change Detection in
Classification Models Induced from Time-Series Data, pp. 101–125. World
Scientific.

Zhang, T., R. Ramakrishnan, and M. Livny (1996). BIRCH: an efficient data
clustering method for very large databases. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, Montreal, Canada,
pp. 103–114. ACM Press.

Zhu, Y. and D. Shasha (2002). StatStream: Statistical monitoring of thousands
of data streams in real time. In Proceedings of the International Conference
on Very Large Data Bases, Hong Kong, pp. 358–369. VLDB Endowment.

238 Knowledge Discovery from Data Streams

Index

Adaptive Algorithms, 8
Adwin Algorithm, 18
Algorithm Granularity, 201

Algorithm Output Granularity,
205

Apriori, 101
Autoassociator Networks, see Nov-

elty Detection
Autoregressive Model, 173

Block Evolution, 7
Blocking Operator, 7

Change Detection, see Concept Drift
Adwin Algorithm, 19
Histograms, 58

Chebyshev Inequality, 14
Chernoff Bound, 14
Closed frequent itemsets, 102
Cluster Features, 83
Clustering, 82

BIRCH, 85
Clustering Examples, 82
Clustering Variables, 92
Clustream, 87
Distributed, 197

Furthest Point Clustering, 197
Grid Clustering, 198

Fractal Clustering, 89
Grid Clustering, 88
Leader Algorithm, 84
Micro Clusters, 83
Monic, 88
ODAC, 92

Change Detection, 96
Partitioning Clustering, 84

Requirements, 82
Single Pass k-Means, 84
Very Fast k-means, 85

Concept Drift, 35
Adaptation, 41
CUSUM, 40
Definition, 37
Detection Methods, 38
Evaluation Metrics, 43
FLORA, 40
Model Management, 42
Page-Hinkley Test, 41
Statistical Process Control, 44
Time Windows, 38

CUSUM, 40

Data Streams, 7
Approximate Answers, 11, 14
Basic Methods, 11
Count-Min Sketch, 12
Data Sets, 241
Data Stream Models, 9
Data Synopsis, 21
Distinct Values, 13
Entropy, 26
Fourier Transform, 24
Frequent Algorithm, 25
Heavy hitters, 25
Hot-Lists, 25
Management Systems, 10
Monitoring, 26, 28, 29, 31
Monitoring Correlation, 29
Poisson Processes, 15
Sampling, 21, 28

Load Shedding, 22
Min-Wise Sampling, 22

239

240 Knowledge Discovery from Data Streams

Reservoir Sampling, 21
Sliding Windows, 16

Adwin Algorithm, 18
Software, 241
Space Saving, 25
Synopsis, 22
Tilted Time Windows, 17

Logarithm Tilted Time Win-
dows, 17

Natural Tilted Time Win-
dows, 17

Wavelets, 23
Haar Wavelets, 23

Decision Trees, 117
Discretization, 61, 62

Entropy, 62
Equal-frequency, 62
Equal-width, 62

Discriminant Analysis, 124
Distributed Data Stream Monitor-

ing, 31, 190
Dynamic Time-Warping, 182
Dynamic Weighted Majority Algo-

rithm, see Multiple Mod-
els

Eclat, 101
Ensembles of Classifiers, see Mul-

tiple Models
Ensembles of Trees, 164
estWin, 107

Fast Fourier Transform, 24
Forest of Trees, 165
FP-growth, 110
FP-stream, 111
FP-Stream Algorithm, 110
FP-tree, 102
Frequent Itemsets

The Problem, 100
estWin, 107
Landmark Windows, 105
LossyCounting, 106
Mining Closed Frequent Item-

sets, 108

Mining Recent Frequent Item-
sets, 107

Moment, 108
Multiple time granularities, 110
StreamMining, 107
Summarizing Itemsets, 102

Heavy hitters, 25, 103, 199
Frequent Algorithm, 25
Hierarchical, 104
Karp Algorithm, 104
Space Saving, 25, 200

Histograms, 51
Change Detection, 58
Discretization, 61
Exponential, 54
Exponential Histograms, 53
Incremental, 55, 199
K-buckets Histograms, 52

Hoeffding Bound, 14
Hoeffding Trees, see VFDT
Hot-Lists, 25

Info-Fuzzy Algorithms, 132

Kalman Filter, 174, 180
Kullback-Leibler, 58

Limited rationality, 8
Load Forecast, 4, 179

Maximal frequent itemsets, 102
McNemar Test, 73
Multiple Models, 157

Concept Drift, 166
Dynamic Weighted Majority Al-

gorithm, 167
Ensembles of Trees, 164
Online Bagging, 161
Online Boosting, 162
Skewed Data, 169
Weighted-Majority Algorithm,

159

Neural Networks, 177
Novelty Detection, 137

Index 241

Approaches Based on Distances,
148

Approaches Based on Extreme
Values, 145

Approaches Based on Frequency,
147

Approaches Based on the De-
cision Structure, 146

Autoassociator Networks, 140
Decision Trees, 142
Desiderata, 139
Evaluation, 143
Learning new Concepts, 145
OLINDDA, 148
One Class Classification, 139
Positive naive Bayes, 141

One Class Classification, see Nov-
elty Detection

Option Trees, 164

Page-Hinkley Test, 41, 74
Poisson Processes, see Data Streams
Positive naive Bayes, see Novelty

Detection
Prequential Error, 46, 70
Prequential Statistics, 70

Comparative Assessment, 71
McNemar Test, 73

Sampling, 21
Load Shedding, 22
Min-Wise Sampling, 22

SAX, 184
Discords, 187
Discretization, 185
Distance, 186
Hot-SAX, 187
Motifs, 186
Piecewise Aggregate Approxi-

mation, 185
Strings, 186

Sequence Pattern Mining, 112
The Problem, 112

Spatio-Temporal Data, 6

Summarization: Count-Min Sketch,
12

Symbolic Approximation, 184
Synopsis, 21, 22

Time series Analysis, 171
Time Windows, 17, 55

Landmark, 17, 105
Sliding Windows, 17, 109
Tilted Windows, 17, 110, 111

Time-series Analysis
Exponential moving average, 173
Moving Average, 172
Seasonality, 173
Weighted moving average, 173

Ubiquitous Data Mining, 31, 189

Very Fast Decision Trees, 67, see
VFDT

VFDT, 118
Analysis, 120, 131
Concept Drift, 128
Continuous Attributes, 121
Functional Leaves, 125

Wavelets, see Data Streams
Haar Wavelets, 23

242 Knowledge Discovery from Data Streams

Appendix A

Resources

A.1 Software

Examples of public available software for learning from data streams in-
clude:

• VFML. The VFML (Hulten and Domingos, 2003) toolkit for mining high-
speed time-changing data streams. Available at http://www.cs.washington.edu/dm/vfml/.

• MOA. The MOA (Holmes et al., 2007) system for learning from massive
data sets. Available at http://www.cs.waikato.ac.nz/∼abifet/MOA/.

• Rapid-Miner (Mierswa et al., 2006) a data mining system with plug-in
for stream processing. Available at http://rapid-i.com/.

• SAX (Lin et al., 2003) is the first symbolic representation for time se-
ries that allows for dimensionality reduction and indexing with a lower-
bounding distance measure. Available at http://www.cs.ucr.edu/∼jessica/sax.htm.

A.2 Data Sets

• UCI Knowledge Discovery in Databases Archive, an on-line repository of
large data sets which encompasses a wide variety of data types, analysis
tasks, and application areas.
http://kdd.ics.uci.edu/.

• UCR Time-Series Data Sets, maintained by Eamonn Keogh, University
California at Riverside, US.
http://www.cs.ucr.edu/∼eamonn/time series data.

• KDD Cup Center, the annual Data Mining and Knowledge Discovery
competition organized by ACM Special Interest Group on Knowledge
Discovery and Data Mining.
http://www.sigkdd.org/kddcup/.

243

244 Knowledge Discovery from Data Streams

• Frequent Itemset Mining Dataset Repository, http://fimi.cs.helsinki.fi/data/

• Intel Lab Data contains information about data collected from 54 sensors
deployed in the Intel Berkeley Research lab.
http://db.csail.mit.edu/labdata/labdata.html

• Mining Data Streams Bibliography, Maintained by Mohamed Gaber,
Monash University, Australia.
http://www.csse.monash.edu.au/∼mgaber/WResources.html

• Distributed Data Mining: http://www.umbc.edu/ddm/

• Time Series Data Library: http://www.robjhyndman.com/TSDL/

Some useful data sets Information:

• Led database generator (available from the UCI repository)
The original problem definition and source is Breiman et al. (1984).
This is a simple domain, which contains 7 Boolean attributes and 10
concepts, the set of decimal digits. LED displays contain 7 light-emitting
diodes – hence the reason for 7 attributes. Each attribute value has
the 10% probability of having its value inverted. The optimal Bayes
misclassification rate is 26%.

• Waveform database generator(available from the UCI repository)
The original problem definition and source is Breiman et al. (1984).
There are two generators available. The first version is defined by 21
numerical attributes. The second one contains 40 attributes. In both
versions, each class is generated from a combination of 2 of 3 base waves.
Each instance is generated with added noise (mean 0, variance 1) in each
attribute. It is known that the optimal Bayes error is 14%.

• The SEA concepts
The data set was first described in Street and Kim (2001). It consists of
three attributes, where only two are a relevant attributes: xi ∈ [0, 10],
where i = 1, 2, 3 . The target concept is x1 + x2 ≤ β, where β ∈
{7, 8, 9, 9.5}. The training set have four blocks. For the first block the
target concept is with β = 8. For the second, β = 9; the third, β = 7;
and the fourth, β = 9.5. That is, the target concept changes over time.

